
cmapdata
Release 0.1.0

Diana Haring

Sep 22, 2023

GETTING STARTED

1 Installation and Setup 3
1.1 Documentation . 3

2 Database Design and Table Structure 5
2.1 Variable Level Metadata . 6
2.2 Dataset Level Metadata . 7

3 Compute Resources and Data Storage 9
3.1 Data Flow . 9
3.2 Data Storage . 10
3.3 Workstation Repositories . 10
3.4 Synology NAS and Drobo Storage . 11

4 Pitfalls 13

5 CMAP Website 15

6 Web Validator 21

7 Workflow 25
7.1 User Submitted Datasets . 25
7.2 Outside ‘Small’ Datasets . 26
7.3 Outside ‘Large’ Datasets . 26
7.4 Metadata Updates . 27

8 Table Creation and Indexing 29
8.1 Space-Time Index . 29
8.2 Climatology . 29
8.3 File Groups . 29

9 Data Validation 31
9.1 Pre-Ingestion Tests . 31
9.2 Post-Ingestion Tests . 32
9.3 DB API Endpoints . 32

10 Continuous Ingestion 33
10.1 Collection Scripts . 34
10.2 Process Scripts . 35
10.3 Troubleshooting . 35
10.4 Batch Ingestion . 36
10.5 Continuous Ingestion Badge on Website . 36

i

10.6 Sea Surface Salinity Walkthrough . 37

11 User Submitted Dataset Walkthrough 41
11.1 Removal of Previously Existing Dataset . 41
11.2 Specifying the Ingestion Arguments . 41

12 Outside Small Dataset Walkthrough 45
12.1 Collecting a small dataset from an FTP site using wget . 45
12.2 Processing a small dataset . 47

13 Outside Large Dataset Walkthrough 49
13.1 Argo Float Walkthrough . 49

14 Geotraces Seawater Walkthrough 55
14.1 Geotraces Overview . 55

15 Mesoscale Eddy Data Walkthrough 61
15.1 Mesoscale Eddy Version History . 61

16 Ingesting Cruise Metdata and Trajectory 65
16.1 Metadata Sheet . 65
16.2 Trajectory Sheet . 65
16.3 Ingesting Cruise Templates . 65

17 DB 67
17.1 Custom Table Creation . 68
17.2 Indexing Strategy . 68

18 collect 69
18.1 collection strategies . 69
18.2 FTP Servers . 69
18.3 Zipped File Links . 71
18.4 Webscrapping . 71

19 process 73
19.1 data flow . 73

20 ingest 75
20.1 api_checks.py . 75
20.2 common.py . 75
20.3 credentials.py . 75
20.4 cruise.py . 75
20.5 data_checks.py . 76
20.6 data.py . 76
20.7 DB.py . 76
20.8 general.py . 76
20.9 ingest_test.py . 76
20.10 mapping.py . 76
20.11 metadata.py . 76
20.12 region_classification.py . 77
20.13 SQL.py . 77
20.14 stats.py . 77
20.15 transfer.py . 77
20.16 vault_structure.py . 77

21 Code Changes 79

ii

22 API Ref common.py 81

23 API Ref cruise.py 83

24 API Ref data.py 85

25 API Ref DB.py 87

26 API Ref general.py 89

27 API Ref mapping.py 91

28 API Ref metadata.py 93

29 API/API_region_classification.py 95

30 API Ref SQL.py 97

31 API Ref stats.py 99

32 API Ref transfer.py 101

33 API Ref vault_structure.py 103

iii

iv

cmapdata, Release 0.1.0

cmapdata is a collection of scripts organized into dataset collection (collect), dataset processing (process) and dataset
ingestion (ingest). These docs should provide a primer on data flow into CMAP’s databases along with suggested
improvements.

GETTING STARTED 1

cmapdata, Release 0.1.0

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION AND SETUP

The github repository cmapdata is on the Simons CMAP github organization page. To clone the repository navigate
to/create the directory location where you want the cmapdata repository to live, enter in terminal:

git clone git@github.com:simonscmap/cmapdata.git

The DB repository that houses the SQL table creation scripts can be retrieved with:

git clone git@github.com:simonscmap/DB.git

1.1 Documentation

These docs were built using Sphinx and written in re-structured text. With sphinx installed (via pip), you can build the
docs by running the command:

make html

in the directory docs/

This will produce a build in docs/

To view these locally, you can open up the index.html with chrome/firefox etc.

These docs are hosted on readthedocs.org. You can set up an account with your github and add a webhook so that the
Documentation builds whenever you push to github.

Note: The auto generated API reference does not appear on readthedocs and will only appear locally.

3

cmapdata, Release 0.1.0

4 Chapter 1. Installation and Setup

CHAPTER

TWO

DATABASE DESIGN AND TABLE STRUCTURE

Fig. 1: CMAP DB metadata specific table database diagram

Simons CMAP currently has three servers that contain near replicates of the SQL Server database. The names of these
three are: Rainier, Mariana and Rossby. Rainier was the first dedicated server to host the database and currently serves
as the main ‘source of truth’.

In addition to the three SQL Servers there is a a Spark SQL Warehouse cluster with Apache Hive ANSI SQL:2003
interface. Its alias is: Cluster. This is used for large datasets (i.e. satellite data and Darwin) or large, continuously
updated datasets (i.e. Argo data).

Warning: Rainier is currently the production database and ‘source of truth’. If you want to test features, use
Mariana or Rossby.

Data tables along with metadata tables are stored in the same schema. Common queries live on the database as stored
procedures. Data tables are independent of one another. The dataset table name is stored as a column in the metadata
table tblVariables. This key links the data tables to the rest of the metadata.

5

cmapdata, Release 0.1.0

Metadata tables are listed below with a brief description of each:

2.1 Variable Level Metadata

tblVariables links the data tables to the metadata through the column [Table_Name]. Columns with an _ID suffix are
linked to other metadata tables. For example, Dataset level information in tblDatasets in linked through [Dataset_ID].
Each data variable in a dataset has a row in this table, containing the following columns:

• ID

• DB

• Dataset_ID

• Table_Name

• Short_Name

• Long_Name

• Unit

• Temporal_Res_ID

• Spatial_Res_ID

• Temporal_Coverage_Begin

• Temporal_Coverage_End

• Lat_Coverage_Begin

• Lat_Coverage_End

• Lon_Coverage_Begin

• Lon_Coverage_End

• Grid_Mapping

• Make_ID

• Sensor_ID

• Process_ID

• Study_Domain_ID

• Comment

• Visualize

• Data_Type

• Org_ID

• Conversion_Coefficient

• Has_Depth

tblOrganism contains the organism name and the Organism_ID connects to Org_ID in tblVariables for a
variable describing organism abundance. Additional tables related to the organism identification project are:
tblOrgTaxon, tblOrgTrophic_Level, tblOrgSubtrophics, tblOrgTrophics, tblOrgSize_Image_Bigelow, tblOrg-
Functional_Group_WORMS, tblOrgParaphyletic_Group_WORMS, tblOrgUnicellularity_WORMS. Details on
the project can be found in Jira Epic 8 (https://simonscmap.atlassian.net/browse/CMAP-8)

6 Chapter 2. Database Design and Table Structure

https://simonscmap.atlassian.net/browse/CMAP-8

cmapdata, Release 0.1.0

tblKeywords contains user submitted keywords used in the searching of a variable. tblKeywords contains an ID col-
umn, where each value which corresponds to a unique variable entry in tblVariables.

• var_ID

• keywords

tblTemporal_Resolution, tblSpatial_Resolution, tblMake, tblSensor, tblProcess_Stages, and tblStudy_Domains
are all variable level tables that contain links between the ID’s in tblVariables and their respective tables.

tblVariables_JSON_Metadata contains additional variable metadata that is unstructured to allow users to include any
information that does not fall within the information in tblVariables.

For details on the unstructured metadata project see Jira the following tickets: (https://simonscmap.atlassian.net/
browse/CMAP-563, https://simonscmap.atlassian.net/browse/CMAP-572). Each unstructured metadata object in-
cludes a value array and a description array. Values and descriptions are always arrays, even if empty or single values.
Also, these arrays must always have identical lengths, even if descriptions are empty strings. Descriptions are meant to
be human readable, short descriptions akin to alt-text for an image online. A single variable may have multiple entries
in tblVariables_JSON_Metadata. An example of a variable-level unstructured metadata is:

{"cruise_names":{"values":["PS71"],"descriptions":["Operators Cruise Name"]},"meta_links
→˓":{"values":["https://www.bodc.ac.uk/data/documents/nodb/285421/"],"descriptions":[
→˓"BODC documentation link"]}}

Note: As of September 2023 the only dataset with unstructured metadata is Geotraces Seawater IDP2021v2. Argo
Core and Argo BGC are both good candidates for including unstructured metadata.

2.2 Dataset Level Metadata

tblDatasets contains dataset level information and has links to tblVariables as well as links to cruise and region level
information.

• ID

• DB

• Dataset_Name

• Dataset_Long_Name

• Variables

• Data_Source

• Distributor

• Description

• Climatology

• Acknowledgement

• Doc_URL

• Icon_URL

• Contact_Email

• Dataset_Version

2.2. Dataset Level Metadata 7

https://simonscmap.atlassian.net/browse/CMAP-563
https://simonscmap.atlassian.net/browse/CMAP-563
https://simonscmap.atlassian.net/browse/CMAP-572

cmapdata, Release 0.1.0

• Dataset_Release_Date

• Dataset_History

tblDataset_References holds references associated with the dataset, typically a DOI, paper citation, or website. Ref-
erences that are true DOIs with data frozen in time are linked by Reference_ID to tblDataset_DOI_Download. This
table is used for automating the download of DOI data (DOI_Download_Link) and includes a flag for whether the DOI
download is the CMAP template used for submission via the validator (CMAP_Format)

tblDataset_Vault contains the relative path to the dataset leaf directory as well as a public link to the dataset leaf
directory (read-only permission). In the future this may be joined to the catalog.

tblDataset_Servers holds the alias names of each server the dataset can be found on. This was implemented to allow
for replication across some but not all servers, and free up space on Rainier.

Cruise Metadata The metadata for cruises in CMAP is separated into multiple tables. A core tblCruise links
together metadata tables for cruise trajectories, cruise keywords, cruise region links and cruise dataset links. tbl-
Dataset_Cruises is the linking table to connect cruise_IDs with dataset_IDs.

Region Metadata The region tables in CMAP share a similar schema to the cruise tables layout. tblRegions contains
the ocean regions (this can be expanded). tblDataset_Regions is similar to tblDataset_Cruises because it acts as the
linking table between the region and dataset tables. tblCruise_Regions is a linking table between cruise IDs and region
IDs.

tblDatasets_JSON_Metadata contains additional dataset metadata that is unstructured to allow users to include any
information that does not fall within the information in tblDatasets.

For details on the unstructured metadata project see Jira the following tickets: (https://simonscmap.atlassian.net/
browse/CMAP-563, https://simonscmap.atlassian.net/browse/CMAP-572). As with the variable-level unstructured
metadata, ach unstructured metadata object for datasets includes a value array and a description array. Values and
descriptions are always arrays, even if empty or single values. Also, these arrays must always have identical lengths,
even if descriptions are empty strings. Descriptions are meant to be human readable, short descriptions akin to alt-text
for an image online. A dataset may have multiple entries in tblDatasets_JSON_Metadata. An example of a dataset-level
unstructured metadata is:

{"publication_link":{"values":["https://www.geotraces.org/geotraces-publications-
→˓database/"],"descriptions":["Link to database of GEOTRACES publications"]}}

Note: As of September 2023 the only dataset with unstructured metadata is Geotraces Seawater IDP2021v2. Argo
Core and Argo BGC are both good candidates for including unstructured metadata.

8 Chapter 2. Database Design and Table Structure

https://simonscmap.atlassian.net/browse/CMAP-563
https://simonscmap.atlassian.net/browse/CMAP-563
https://simonscmap.atlassian.net/browse/CMAP-572

CHAPTER

THREE

COMPUTE RESOURCES AND DATA STORAGE

The two main computers used in the ingestion pipeline are a Dell XPS 15 laptop and a newer Exxact workstation. For
memory intensive and multi-core data processing, the workstation is a useful resource. It could either be used directly
from the lab or ssh’ed into to run processing jobs. Using VS Code’s Remote-SSH extension, you can connect and
modify files over ssh without using command line editors. To start a connection, click on the bottom left green icon.
The ip address is for the workstation is 128.208.238.117

3.1 Data Flow

The web validator stores submitted datasets to Dropbox (Dropbox/Apps/<dataset_short_name>/<dataset_short_name_timestamp.xlsx>).
After submission the CMAP data team runs the dataset through the QC API. The outputs from the QC API are saved
in Dropbox (Dropbox/Apps/<dataset_short_name>/iterations/1/propose). When changes are approved by the
submitter, a copy of the finalized dataset is added to the accept folder within the iteration folder structure, as well as to
the final folder where ingestion will pull from (Dropbox/Apps/<dataset_short_name>/final). Only one file should
be saved in the final folder for ingestion.

Ingesting a dataset submitted through the validator pulls from the final folder and creates a folder based on the table
name in the vault/ directory.

9

cmapdata, Release 0.1.0

3.2 Data Storage

Both the web application and the data ingestion pipeline share storage over dropbox. With an unlimited account, we
can use dropbox to store all our pre-DB data. In addition to dropbox, the vault/ also is synced on the workstation under:
~/data/CMAP Data Submission Dropbox/Simons CMAP/vault/

For details on the vault structure, see Jira ticket 329 (https://simonscmap.atlassian.net/browse/CMAP-329)

assimilation
r2r_cruise
model
observation

in-situ
cruise

| | | {table_name}
| | | code
| | | doc
| | | metadata
| | | nrt
| | | raw
| | | rep
| | | stats

drifter
float
mixed
station

remote
satellite

Dropbox’s CLI tools are installed on the workstation. Using the selective sync feature of dropbox, the /vault stored on
disk can be synced with the cloud. By reading/writing to disk, IO speeds for data processing should be improved.

If dropbox has stopped syncing, you can start the CLI by typing in terminal:

dropbox start
dropbox status

3.3 Workstation Repositories

Scripts for new SQL tables and indicies are written to the DB repository found here: ~/Documents/CMAP/DB/

Python scripts for collection, ingestion, and processing are written to the cmapdata repository found here: ~/Docu-
ments/CMAP/cmapdata/. The dataingest branch contains the most recent updates.

The vault directory that syncs with Dropbox is found here: /data/CMAPDataSubmissionDropbox/SimonsCMAP/vault/
Note there are spaces in the directories “CMAP Data Submission” and “Simons CMAP”

Thumbnails for the catalog page are saved here: /data/CMAPDataSubmissionDropbox/SimonsCMAP/static/mission_icons

10 Chapter 3. Compute Resources and Data Storage

https://simonscmap.atlassian.net/browse/CMAP-329

cmapdata, Release 0.1.0

3.4 Synology NAS and Drobo Storage

Before storing data on Dropbox, two non-cloud storage methods were tried. Both the Drobo and Synology NAS are
desktop size hard disk storage. Each contains ~40-50TB of disk space. There are limitations to each of these. The
Drobo requires a connection through usb-c/thunderbolt. The Synology NAS can be accessed over the internet, ie
(Network Attached Storage). They read/write speed for both is quite slow compared to the disks on the workstation.
Perhaps one or both could be used as another backup?

3.4. Synology NAS and Drobo Storage 11

cmapdata, Release 0.1.0

12 Chapter 3. Compute Resources and Data Storage

CHAPTER

FOUR

PITFALLS

• Mariana has had both hardware and software issues in the past. Keep an eye on ingestion speeds – if they begin
to decrease over time this could be a sign of an upcoming failure.

• kdswap0 issue

13

cmapdata, Release 0.1.0

14 Chapter 4. Pitfalls

CHAPTER

FIVE

CMAP WEBSITE

Below are a handful of screenshots of the CMAP website with names of the core tables in the database that populate
each section. The examples given are based on lessons learned when debugging various issues after updates to the
database.

The functionality on the catalog page relies on multiple core tables.

• The search box relies on keywords associated with a dataset.

• The dataset cards are populated by the udfCatalog() SQL function

• The regions filter pulls from tblDataset_Regions. While all datasets that have gone through the QCI API checks
include regions as keywords, the region filter does not reference keywords.

• The download data dialog populates the subset values from tblDataset_Stats.

The top of the dataset page uses a stored procedure to join data from three core SQL tables:

The bottom of the dataset page uses udfVariableCatalog() which is optimized to extract the JSON data from tbl-
Dataset_Stats more efficiently. The entries diplayed in the references section show all references submitted in the
validator template, along with an additional DOI where applicable. The linked cruises at the bottom will display if
there is a match on Name or Nickname in tblCruise. If the cruise is not yet in CMAP, the cruise name included in the

15

cmapdata, Release 0.1.0

16 Chapter 5. CMAP Website

cmapdata, Release 0.1.0

dataset_meta_data tab of the validator excel template will not be displayed here. All datasets run through the QC API
will include all cruise names and nicknames listed in the template as keywords.

The cruise page groups cruises by year. If a cruise is added to tblCruise but does not include a min/max time value,
the cruise name will be grouped in a NULL category at the bottom of listed years.

Only cruises that are associated with a dataset are displayed in the cruise search list. The cruise page will link you back
to each dataset page it is associated with.

If a cruise is added but does not have an associated trajectory, selecting the cruise will zoom you in on your current
view of the globe. The location the globe zooms you to is based on the data in tblCruise_Trajectory, not based on the
min/max of lat/lon in tblCruise.

17

cmapdata, Release 0.1.0

18 Chapter 5. CMAP Website

cmapdata, Release 0.1.0

19

cmapdata, Release 0.1.0

The viz page will show different charting options depending on the variable selected. Only gridded datasets (typically
model or satellite) should be given a defined spatial resolution. If a variable is assigned a spatial resolution other than
“Irregular” (ID = 1), it cannot have any missing lat/lon values that would leave holes in the global coverage. The depth
profile chart option will only be visible if the Has_Depth = 1 in tblVariables.

20 Chapter 5. CMAP Website

CHAPTER

SIX

WEB VALIDATOR

Collaborator datasets are submitted through our online web validator. This system checks the integrity of the data,
dataset metadata and variable metadata sheets, looking for missing information and invalid data types. The status
of the dataset is available to the curation team as well as the submitter on the data submission dashboard (https://
simonscmap.com/datasubmission/admindashboard)

Once a collaborator has successfully submitted a dataset through the validator, the process will be handed over to the
data curation team for additional QA/QC checks. Data and metadata should be checked to make sure it conforms to
the data submission guide. At this point it is also a good idea to do some sanity checks on the data itself. A common
pitfall from data submitters is to mix up the sign of longitude, placing the dataset in the wrong ocean. When the first
check is complete, the dataset should have secondary independent QA/QC check.

Any edits of suggestions should be sent back to the submitter through the web validator. Additionally, any changes in
the ‘phase’ should be updated through the dropdown menu in the dashboard.

Once all the dataset changes are complete, the submitter should register a DOI for their dataset and send it over via the
validator.

Note: Datasets submitted through the web validator are currently stored in dropbox: ‘CMAP Data Submission Drop-
box/Simons CMAP/Apps/Simons CMAP Web Data Submission/{dataset_name}/{dataset_name_datestring.xlsx}.
Validator folders are currently based on dataset short name. This means it is possible a submitted dataset will be

21

https://simonscmap.com/datasubmission/admindashboard
https://simonscmap.com/datasubmission/admindashboard

cmapdata, Release 0.1.0

22 Chapter 6. Web Validator

cmapdata, Release 0.1.0

saved to a folder that already exists, if a user reuses a dataset short name. A fix for this should be implemented in the
future by leveraging the unique ID in tblData_Submissions.

23

cmapdata, Release 0.1.0

24 Chapter 6. Web Validator

CHAPTER

SEVEN

WORKFLOW

Warning: Rainier is currently the production database and ‘source of truth’. If you want to test features, use
Mariana or Rossby.

The process for ingesting datasets into CMAP differs based on a few factors. The three main categories are User
Submitted Datasets, Outside ‘Small’ Datasets and Outside ‘Large’ Datasets. User submitted datasets that pass through
the web validator must be <150MB. Outside ‘Small’ Datasets are datasets collected that are collected from an outside
source that can generally fit in memory. An example would be an AMT or HOT dataset. Outside ‘Large’ Datasets
are datasets collected from an outside source that have multiple data files and cannot fit into memory. Examples are
satellite data, model data or large insitu collections such as ARGO or GOSHIP.

7.1 User Submitted Datasets

User submitted datasets are submitted through the web validator. Once the QA/QC checks are completed and a DOI
is received, the dataset can be ingested into CMAP. Details on the QC process can be found here: https://simonscmap.
atlassian.net/browse/CMAP-621. An additional step of adding org_id and conversion_coefficient columns to the vari-
able metadata sheet in the submitted template is done only for variables describing organism abundance.

Using general.py, you can pass command line arguments to specify which server you wish to add the dataset to as well
as including a DOI.

Where we have:

python general.py {table_name} {branch} {filename} {-d} {DOI link} {-l} {DOI download␣
→˓link} {-f} {DOI file name} {-S} {server}

• {table_name}: Table name for the dataset. Must start with prefix “tbl”. Ex. tblFalkor_2018

• {branch}: Branch where dataset should be placed in Vault. Ex’s: cruise, float, station, satellite, model, assimi-
lation

• {filename}: Base file name in vault/staging/combined/. Ex.: ‘global_diazotroph_nifH.xlsx’

• {-d}: Optional flag for including DOI with dataset in tblReferences. DOI link string follows flag arg.

• {DOI link}: String for full web address of CMAP specific DOI. Ex. “https://doi.org/10.5281/zenodo.8306724”

• {-l}: Optional flag for including the DOI download link in tblDataset_DOI_Download. DOI dowload link string
follows flag.

• {DOI download link}: String for DOI download link of CMAP specific DOI. Ex. “https://zenodo.org/record/
8306724/files/Gradients5_TN412_LISST_DEEP_Profiles.xlsx?download=1”

25

https://simonscmap.atlassian.net/browse/CMAP-621
https://simonscmap.atlassian.net/browse/CMAP-621
https://doi.org/10.5281/zenodo.8306724
https://zenodo.org/record/8306724/files/Gradients5_TN412_LISST_DEEP_Profiles.xlsx?download=1
https://zenodo.org/record/8306724/files/Gradients5_TN412_LISST_DEEP_Profiles.xlsx?download=1

cmapdata, Release 0.1.0

• {-f}: Optional flag for DOI file name. DOI file name string follows flag.

• {DOI file name}: String for filename of CMAP specific DOI. Ex. “Gradi-
ents5_TN412_LISST_DEEP_Profiles.xlsx”

• {-t}: Optional flag for denoting if DOI is a web validator template. Default value is 1.

• {DOI in CMAP template}: Boolean if DOI is a web validator template.

• {-S}: Required flag for specifying server choice. Server name string follows flag.

• {server}: Valid server name string. Ex. “Rainier”, “Mariana” or “Rossby”

An example string would be:

python general.py tblTN412_Gradients5_LISST_DEEP_Profiles cruise 'Gradients5_TN412_LISST_
→˓DEEP_Profiles.xlsx' -S 'Rossby' -d 'https://doi.org/10.5281/zenodo.8306724' -l 'https:/
→˓/zenodo.org/record/8306724/files/Gradients5_TN412_LISST_DEEP_Profiles.xlsx?download=1'␣
→˓-f 'Gradients5_TN412_LISST_DEEP_Profiles.xlsx'

general.py contains wrapper functions that will split the excel sheet into pandas dataframes, transfer the data to vault/,
build a suggested SQL table, insert data, split dataset_meta_data and vars_meta_data into SQL queries and insert into
SQL metadata tables, build summary statistics, match provided cruises to cruises in the database, classify the dataset
into ocean regions and create maps and icons for the web catalog.

Certain functions are only run when the server name is Rainier (creating icon map, data server alias assignment, and
data ingestion tests). A suggested order for server ingestion is starting with Rossby (the fastest server), then ingesting
to Mariana, and finally on Rainier. As DOIs are requirements for user submitted datasets, a function to test the data in
the DOI matches the data in Rainier also runs automatically.

7.2 Outside ‘Small’ Datasets

These datasets usually need quite a bit of data munging to make them match the CMAP data format. Additionally,
metadata needs to be collected and created. To keep a record of data transformations, any processing scripts should be
placed in /process/../process_datasetname.py. Additionally, any relevant collection information should be placed in
/collect/../collect_datasetname.py. A text file containing a link to the process and collect scripts in GitHub should be
saved in the vault to {dataset table name}/code/

With the addition of the QC API, it is suggested to submit the final, cleaned dataset to the validator. Once QC is complete
and the /final folder is populated with the finalized template, ingestion can be done as if it was a user submitted dataset
as described above.

7.3 Outside ‘Large’ Datasets

These datasets are usually composed of multiple data files (generally in netcdf or hdf5). Some features of the in-
gestion pipeline only work for data that can fit into memory. Because of this, special care is needed to ingest these
large datasets. All raw data should be saved in the vault /raw folder for the dataset. Depending on the source, data is
downloaded using curl/wget/ftp etc. Any collection scripts should be stored in /collect/../{collect_datasetname.py}.
Once data has been transfered, the next step is any data processing. This should be recorded in **/pro-
cess/../process_datasetname.py. A text file containing a link to the process and collect scripts in GitHub should
be saved in the vault to {dataset table name}/code/

In this data processing script, data should be read from the vault /raw folder, cleaned, sorted and inserted into the
database(s).

26 Chapter 7. Workflow

cmapdata, Release 0.1.0

Note: You will need to create a SQL table and add it to the databases prior to ingestion. Any SQL table creation script
should be recorded in DB/ (repository is on Simons CMAP github). Adding indexes once the ingestion has completed
will likely speed up ingestion.

After the data has been inserted and the indices successfully created, metadata will need to be created and added to the
databases. A standard excel template should be used for the dataset and vars metadata sheets. Submit a template to
the validator with a dummy data sheet that holds all variables, but only needs one row of data to make it through the
validator. This allows the data curation team to run the QC API checks and create the /final folder needed for ingesting
the metadata.

There are additional arguments you can use for large datasets:

• {-a}: Optional flag for specifying server name where data is located

• {data_server}: Valid server name string. Ex. “Rainier”, “Mariana”, “Rossby”, or “Cluster”

• {-i}: Optional flag for specifying icon name instead of creating a map thumbnail of the data

• {icon_filename}: Filename for icon in Github instead of creating a map thumbnail of data. Ex: argo_small.jpg

• {-p}: Optional flag for defining process level

• {process_level}: Default value is “rep”. Change to “nrt” for near-real-time datasets

• {-F}: Optional flag for specifying a dataset has a valid depth column. Default value is 0

• {-N}: Optional flag for specifying a ‘dataless’ ingestion or a metadata only ingestion

The {-a} flag can be used if the data is not present on all on-prem servers (Rainier, Rossby, and Mariana), and has to
be used if the data is only on the cluster. It can also help speed up the calculation of stats when ingesting metadata to
Mariana or Rainier, if you use Rossby as the data_server. Rossby is the fastest on-prem server.

The {-i} flag is used if you want to display a logo instead of creating a map of the data for the thumbnail on the catalog
page. The icon_filename needs to include the file extension, and should reference a logo or icon already saved in
/static/mission_icons

The {-F} flag is needed when adding metadata that doesn’t include the full dataset in the excel template. When ingesting
a template with data in it, the ingestion code checks for the presence of a depth field automatically. The depth flag is
needed for the viz page to know which chart types to display. If a large dataset has a “depth” field (which should only
be named as such if there are no rows with missing depth values), include -F 1 in your ingestion command.

7.4 Metadata Updates

There are times when a dataset is already ingested, but updates to the metadata are needed. The -U argument will
delete all metadata present for the dataset, but will retain the data table. The -F depth flag will need to be included if
the dataset has depth. All flags related to a DOI will need to be included if the DOI link is not in the dataset_references
column of the dataset_meta_data tab.

7.4. Metadata Updates 27

cmapdata, Release 0.1.0

28 Chapter 7. Workflow

CHAPTER

EIGHT

TABLE CREATION AND INDEXING

8.1 Space-Time Index

All datasets in CMAP share a common data format that includes columns with space a time information (time, lat, lon,
depth <opt.>). With these, space-time indexes can be created on data tables. Creating clustered indicies on this ST
index will speed up query performance on large datasets. Only include depth in the index if the dataset has a depth
component.

8.2 Climatology

To quickly calculate climatology for large datasets, specific climatology indicies can be created. Examples of these can
be found in the tblSSS_NRT_cl1 or others.

8.3 File Groups

In each server, data in the database is split into File Groups. The available space can be queried with a SQL Server
stored procedure. You can execute a stored procedure either in SSMS, Azure Data Studio or a pyodbc query.

EXEC uspFileGroup_Volume()

29

cmapdata, Release 0.1.0

30 Chapter 8. Table Creation and Indexing

CHAPTER

NINE

DATA VALIDATION

There are multiple data validation tests built into the ingestion code. Additional functions can be added to the scripts
below, depending on when you would like the checks to run.

9.1 Pre-Ingestion Tests

There are multiple touch points for a use submitted dataset to pass through data and formatting checks. The first
is a successful submission through the validator. Following that, the CMAP data curation team uses the QC API
(https://cmapdatavalidation.com/docs#tag/Pre-Ingestion-Checks) to run additional checks and fill in keywords. Prior
to the existence of the QC API, pre-ingestion checks were written into the ingestion code that are now duplicative.
Specifically, checks for outliers in data values are done during submission to the validator, in the viz output of the QC
API, and when the data is read into memory for ingestion.

ingest/data_checks.py contains various functions for checking data, either before or during ingestion.

check_df_on_trajectory was a test written before the QC API checked if the data submitted fell within the space and
time bounds of the associate cruise trajectory in CMAP. It uses the CMAP_Sandbox database on Beast, which will
likely be retired.

check_df_values checks that lat and lon are within range, depth is not below zero, and checks all numeric variables for
min / max < or > 5 times standard deviation of dataset. Returns 0 if all checks pass, returns 1 or more for each variable
with values out of expected range. This is called in general.py with each ingestion.

check_df_nulls checks a dataframe against an existing SQL table for nulls where a SQL column is defined as not null.
Returns 0 if all checks pass, returns 1 or more for each dataframe variable with nulls where SQL column is not null.

check_df_constraint checks a dataframe again an existing SQL table’s unique indicies. Returns 0 if all checks pass,
returns 1 if duplicates are in the dataframe in columns that should contain unique values.

check_df_dtypes checks a dataframe against an existing SQL table. Returns 0 if all checks pass, returns 1 or more for
each column with different data types.

check_df_ingest runs the last three tests and returns 0 if all checks passed.

check_metadata_for_organism checks variable_metadata_df for variable names or units that could be associated with
organisms. Checks variable short and long names for any name found in tblOrganism. Returns True if no potential
organism variables are present. This is called in general.py with each ingestion.

validate_organism_ingest checks for the presence of org_id and conversion_coefficient in the vars_meta_data sheet.
If those columns are present but blank, if checks that they should be blank. Checks that both columns are filled if one is
filled for a variable. Checks that the conversion_coefficient is correct based on unit (this last check could use additional
logic). Returns True if columns are not present or no issues are found. This is called in general.py with each ingestion.

31

https://cmapdatavalidation.com/docs#tag/Pre-Ingestion-Checks

cmapdata, Release 0.1.0

9.2 Post-Ingestion Tests

All post-ingestion tests are run when the ingestion server is Rainier. As Rainier is the production database for the CMAP
website, testing for a successful ingestion on Rossby first is suggested. With Rainier as the final server for ingestion,
the following tests are run in post_ingest.py:

checkServerAlias checks the table is present on each server listed for a dataset in tblDataset_Servers. If less than three
servers are listed in tblDataset_Server, it checks each on prem server if the table is present.

checkRegion checks that at least one region is associated with a dataset in tblDataset_Regions. If the dataset only
lives on the cluster it will either assign all regions associated with Argo datasets, or allow you to enter your own. If no
regions are associated with a dataset and it is in an on-prem server, regions will be assigned automatically based on a
distinct list of lat and lon.

checkHasDepth checks that the Has_Depth flag in tblVariables is accurate based on the presence of a depth column
in the data table.

compareDOI downloads a CMAP template from a DOI link and checks the data against what is in SQL. Checks
numeric columns with math.isclose() as the number of significant digits can change on import. Deletes downloaded
template after checks.

pycmapChecks calls various pycmap functions. Skips tests on stats if the dataset is larger than 2 million rows (included
to stop SELECT * FROM running on the cluster, specifically for Argo). Note: due to a cache of the dataset IDs on the
api layer, it’s possible the pycmap tests will fail if the cache has not reset after ingestion.

fullIngestPostChecks runs all checks listed above, with the optional argument to check the DOI data. Also runs
api_checks.postIngestAPIChecks() on every 10th dataset (see DB API Endpoints below for details on this). This is
called in general.py with each ingestion to Rainier.

9.3 DB API Endpoints

Information on the DB API endpoints can be found here: https://cmapdatavalidation.com/docs#tag/
Post-Ingestion-Checks

You can test out each endpoint here: https://cmapdatavalidation.com/try#/

Running the DB API checks on each ingestion should not be necessary. There is both a monetary cost for each API
check and an unneccesary load on the servers to justify running these checks on each ingestion. Currently the logic to
run these checks is on every 10 datasets. Each new dataset, or metadata update, will result in a new Dataset ID. These
IDs are not backfilled, so when metadata is deleted, the old Dataset ID will not be reused.

The fullIngestPostChecks function will run **api_checks.postIngestAPIChecks() ** when a Dataset ID is divisible
by ten.

def postIngestAPIChecks(server = 'Rossby'):
Runs DB endpoint checks. Default server is Rossby

db_name = 'Opedia'
strandedTables()
strandedVariables(server, db_name) ## Checks all on prem servers
numericLeadingVariables(server, db_name)
duplicateVarLongName(server, db_name)
duplicateDatasetLongName()
datasetsWithBlankSpaces(server, db_name)
varsWithBlankSpace(server, db_name)

The default server is Rossby as it’s the fastest. Only strandedVariables() checks all on prem servers.

32 Chapter 9. Data Validation

https://cmapdatavalidation.com/docs#tag/Post-Ingestion-Checks
https://cmapdatavalidation.com/docs#tag/Post-Ingestion-Checks
https://cmapdatavalidation.com/try#/

CHAPTER

TEN

CONTINUOUS INGESTION

There are currently 13 datasets processed and ingested continuously. For details on the project, see Jira ticket 688
(https://simonscmap.atlassian.net/browse/CMAP-688)

All near real time (NRT) datasets are only ingested to the cluster. Note that dataset replication can be done across any of
our servers. See Jira ticket 582 for details on the distributed dataset project (https://simonscmap.atlassian.net/browse/
CMAP-582). The following datasets are downloaded, processed, and ingested utilizing run_cont_ingestion.py. This
can run via the terminal:

cd ~/Documents/CMAP/cmapdata
python run_cont_ingestion.py

Table 1: Datasets Collected and Processed Daily
Dataset Target Servers New Data Available
Sattelite SST Rainier, Mariana, Rossby,

Cluster
Daily

Satellite SSS Rainier, Mariana, Rossby,
Cluster

Daily, ~2 week lag

Satellite CHL Mariana, Rossby, Cluster ~Weekly, ~2 month lag
Satellite CHL NRT Cluster ~Weekly
Satellite POC Mariana, Rossby, Cluster ~Weekly, ~2 month lag
Satellite POC NRT Cluster ~Weekly
Satellite AOD Mariana, Rossby, Cluster Monthly
Satellite Altimetry NRT
(Signal)

Cluster Daily

Satellite Altimetry (Sig-
nal)

Mariana, Rossby, Cluster ~4x a year

Satellite PAR (Daily) Cluster Daily, ~1 month lag
Satellite PAR NRT (Daily) Cluster Daily

Each dataset has a collect and process script.

33

https://simonscmap.atlassian.net/browse/CMAP-688
https://simonscmap.atlassian.net/browse/CMAP-582
https://simonscmap.atlassian.net/browse/CMAP-582

cmapdata, Release 0.1.0

10.1 Collection Scripts

Collection scripts can be found in cmapdata/collect/model and in cmapdata/collect/sat within the dataingest branch of
the GitHub repository (https://github.com/simonscmap/cmapdata). Each dataset (with the exception of Argo) adds an
entry per file downloaded to tblProcess_Queue.

tblProcess_Queue contains information for each file downloaded for continuous ingestion. It holds the original naming
convention for each file, the file’s relative path in the vault, the table name it will be ingested to, the date and time it
was downloaded and processed, and a column to take note of download errors.

• ID

• Original_Name

• Path

• Table_Name

• Downloaded

• Processed

• Error_Str

Each collection script does the following:

1. Retries download for any file previously attempted that includes and error message

2. Get the date of the last succesful download

3. Attempts to download the next available date range. Start and end dates are specific to each dataset’s temporal
resolution and new data availability (see New Data Available column in table above)

4. Entries for each date a download is attempted for are writted to tblProcess_Queue, with successful downloads
denoted by a NULL Error_Str

Dataset-specific logic:

1. tblPisces_Forecast_cl1 updates the data on a rolling schedule. Each week new data is available, and ~2 weeks
of previous data is overwritten by the data producer. GetCMEMS_NRT_MERCATOR_PISCES_continuous.py
will re-download these files, and if successfully downloaded, will delete the existing data for that day from the
cluster. Simply creating new parquet files and pushing to S3 does not update the data in the cluster, so it is
necessary to delete the data first.

2. The NRT datasets should not overlap with the matching REP datasets. For example, when new data is successfully
ingested for tblModis_PAR_cl1, data for that date is deleted from tblModis_PAR_NRT.

3. A successful download for one day of tblWind_NRT_hourly data results in 24 files. An additional check is in
place when finding the last successful date downloaded by including there need to be 24 files for that date. If it
is less than 24, it will retry downloading that date.

4. Data for tblAltimetry_REP_Signal is updated by the data provider sporadically throughout the year. New
data is checked weekly. Date range for downloads is based on latest files in the FTP server. See /col-
lect/sat/CMEMS/GetCMEMS_REP_ALT_SIGNAL_continuous.py for details.

If a file download is attempted but fails because no data is available yet, the Original_Name will be the date where data
wasn’t available (ex. “2023_08_09”) and the Error_Str will be populated. Each collection script has a retryError func-
tion that queries dbo.tblProcess_Queue for any entries where Error_Str is not null. If a file is successfully downloaded
on a retry, tblProcess_Queue will be updated with the original file name and date of successful download.

34 Chapter 10. Continuous Ingestion

https://github.com/simonscmap/cmapdata

cmapdata, Release 0.1.0

10.2 Process Scripts

Each process script does the following:

1. Pulls newly downloaded files from tblProcess_Queue where Error_Str is NULL.

2. Does a schema check on the new downloaded file against the oldest NetCDF in the vault

3. Processes file and adds climatology fields (year, month, week, dayofyear)

4. Does a schema check on the processed file against the oldest parquet file in the vault

5. Ingests to on-prem servers (see Target Servers column in table above)

6. Copies parquet file to S3 bucket for ingestion to the cluster

7. Updates Processed column in tblProcess_Queue

8. Adds new entry to tblIngestion_Queue

tblIngestion_Queue contains information for each file processed for continuous ingestion. It holds the file’s relative
path in the vault, the table name it will be ingested to, the date and time it was moved to S3 (Staged), and the date and
time it was added to the cluster (Started and Ingested).

• ID

• Path

• Table_Name

• Staged

• Started

• Ingested

Once all new files have been processed from tblProcess_Queue and added to tblIngestion_Queue, trigger the ingestion
API. The URL is saved in ingest/credentials.py as S3_ingest. It is best to only trigger the ingestion API once, which is
why the snippet below is run after files for all datasets have been processed. See Jira ticket 688 for additional details:
(https://simonscmap.atlassian.net/browse/CMAP-688)

requests.get(cr.S3_ingest)

After all files have successfully ingested to the cluster (Ingested will be filled with the date and time it was completed),
each dataset will need updates to tblDataset_Stats. In run_cont_ingestion.py, updateCIStats(tbl) formats the min and
max times to ensure the download subsetting and viz page works properly. In short, time must be included, along with
the ‘.000Z’ suffix.

10.3 Troubleshooting

Occasionally datasets will have days missing, resulting in a date being retried on each new run of run_cont_ingestion.py.
In some cases, data will never be provided for these dates. This information can be found in the documentation provided
by each data provider. For example, the SMAP instrument used for SSS data experienced downtime between Aug 6
- Sept 23 2022 (see Missing Data section: https://remss.com/missions/smap/salinity/). That date range was deleted
from tblProcess_Queue to prevent those dates from being rechecked each run.

If there are known issues of data already ingested that the data producer has fixed, the entry for the impacted dates
should be deleted from tblProcess_Queue and tblIngestion_Queue and redownloaded. Data should be delete from
impacted on-prem servers and the cluster as applicable before reingestion.

10.2. Process Scripts 35

https://simonscmap.atlassian.net/browse/CMAP-688
https://remss.com/missions/smap/salinity/

cmapdata, Release 0.1.0

Each dataset’s processing script has checks for changes in schema. Some data providers will change the dataset name
when a new version is processed, but not all. If a processing script finds a schema change for a dataset that has the same
name / ID / version number, a new dataset should be made in CMAP with a suffix denoting a new change log iteration.
For example, tblModis_CHL_cl1 is a reprocessed version of tblModis_CHL.

10.4 Batch Ingestion

The following datasets are to be ingested monthly. Due to the nature of updates done by the data provider, each month
of Argo is a new dataset. These datasets will be ingested via batch ingestion instead of appending to existing tables like
the datasets described above. See the outside large dataset walkthrough for details on Argo processing.

Table 2: Datasets Collected and Processed Monthly
Dataset Target Servers New Data Available
Argo REP Core Cluster Monthly
Argo REP BGC Cluster Monthly

10.5 Continuous Ingestion Badge on Website

The CMAP Catalog page includes a filter for Continuously Updated datasets and displays badges for each applicable
dataset.

The badges and filter call the uspDatasetBadges stored procedure, which in turn calls the udfDatasetBadges() function.
As Argo datasets are a batch ingestion, they are not included in tblProcess_Queue. In order to have the badges display
for Argo datasets, a union was done for any Argo REP table, regardless of month.

select distinct table_name, ci = 1 from tblProcess_Queue
union all
select distinct table_name, ci = 1 from tblvariables where Table_Name like

→˓'tblArgo%_REP_%'

36 Chapter 10. Continuous Ingestion

cmapdata, Release 0.1.0

10.6 Sea Surface Salinity Walkthrough

There are two version of Sea Surface Salinity (SSS) data. For details on the differences see Jira ticket 754 (https:
//simonscmap.atlassian.net/browse/CMAP-754). Continuous ingestion downloads the REMSS SMAP data. The pre-
vious version of SSS data in CMAP was collected from V4.0 provided by REMSS. The updates in the V5.0 release
recalculated historic data (details can be found here: https://remss.com/missions/smap/salinity/), which meant we could
no longer append new data to the existing table.

Due to the release of V5.0, a new table was made with a “change log” suffix of 1. New SSS data is currently ingested
into tblSSS_NRT_cl1. The tblSSS_NRT table can be retired and removed from the databases after users have been
notified via a news update on the homepage. A typical wait time has been one month after publishing a news story
before a dataset can be removed.

10.6.1 Download SSS Data

The data is downloaded using wget, calling the data.remss URL with the year and day of year of the data:

file_url = f'https://data.remss.com/smap/SSS/V05.0/FINAL/L3/8day_running/{yr}/RSS_smap_
→˓SSS_L3_8day_running_{yr}_{dayn_str}_FNL_V05.0.nc'

As with each continuously ingested dataset, there is a function to retry any previous dates that resulted in an error.
Errors are generated by either a successful, but empty download, or a failed download attempt.

The first function run in the GetREMSS_SSS_cl1_continuous.py script is:

def retryError(tbl):
qry = f"SELECT Original_Name from dbo.tblProcess_Queue WHERE Table_Name = '{tbl}'␣

→˓AND Error_Str IS NOT NULL"
df_err = DB.dbRead(qry, 'Rainier')
dt_list = df_err['Original_Name'].to_list()
if len(dt_list)>0:

dt_list = [dt.datetime.strptime(x.strip(), '%Y_%m_%d').date() for x in dt_list]
for date in dt_list:

get_SSS(date, True)

This function checks tblProcess_Queue for any previous errors and runs a retry on the download.

The get_SSS function formats the date into the necessary day of year format and attempts a download via wget. If the
download is a retry, the entry for that date in tblProcess_Queue will be updated with the original file name and the
date of the successful download. If the download is not a retry, a new entry will be added to tblProcess_Queue. If any
failure occurs, the error_str will be populated and the original file name will be populated with the date of the data that
failed to download (ie “2023_08_26”). This string is converted to a date for future retries.

def get_SSS(date, retry=False):
yr = date.year
dayn = format(date, "%j")
dayn_str = dayn.zfill(3)
file_url = f'https://data.remss.com/smap/SSS/V05.0/FINAL/L3/8day_running/{yr}/RSS_

→˓smap_SSS_L3_8day_running_{yr}_{dayn_str}_FNL_V05.0.nc'
save_path = f'{vs.satellite + tbl}/raw/RSS_smap_SSS_L3_8day_running_{yr}_{dayn_str}_

→˓FNL_V05.0.nc'
wget_str = f'wget --no-check-certificate "{file_url}" -O "{save_path}"'
try:

os.system(wget_str)
(continues on next page)

10.6. Sea Surface Salinity Walkthrough 37

https://simonscmap.atlassian.net/browse/CMAP-754
https://simonscmap.atlassian.net/browse/CMAP-754
https://remss.com/missions/smap/salinity/

cmapdata, Release 0.1.0

(continued from previous page)

Error_Date = date.strftime('%Y_%m_%d')
Original_Name = f'RSS_smap_SSS_L3_8day_running_{yr}_{dayn_str}_FNL_V05.0.nc'

Remove empty downloads
if os.path.getsize(save_path) == 0:

print(f'empty download for {Error_Date}')
if not retry:

metadata.tblProcess_Queue_Download_Insert(Error_Date, tbl, 'Opedia',
→˓'Rainier','Download Error')

os.remove(save_path)
else:

if retry:
metadata.tblProcess_Queue_Download_Error_Update(Error_Date, Original_

→˓Name, tbl, 'Opedia', 'Rainier')
print(f"Successful retry for {Error_Date}")

else:
metadata.tblProcess_Queue_Download_Insert(Original_Name, tbl, 'Opedia',

→˓'Rainier')
except:

print("No file found for date: " + Error_Date)
metadata.tblProcess_Queue_Download_Insert(Error_Date, tbl, 'Opedia', 'Rainier',

→˓'No data')

After the retry function is run, the last date that was successfully downloaded is retrieved by checking tblInges-
tion_Queue, tblProcess_Queue, and max date from the cluster.

def getMaxDate(tbl):
Check tblIngestion_Queue for downloaded but not ingested
qry = f"SELECT Path from dbo.tblIngestion_Queue WHERE Table_Name = '{tbl}' AND␣

→˓Ingested IS NULL"
df_ing = DB.dbRead(qry, 'Rainier')
if len(df_ing) == 0:

qry = f"SELECT max(path) mx from dbo.tblIngestion_Queue WHERE Table_Name = '{tbl}'␣
→˓AND Ingested IS NOT NULL"

mx_path = DB.dbRead(qry,'Rainier')
path_date = mx_path['mx'][0].split('.parquet')[0].rsplit(tbl+'_',1)[1]
yr, mo, day = path_date.split('_')
max_path_date = dt.date(int(yr),int(mo),int(day))
qry = f"SELECT max(original_name) mx from dbo.tblProcess_Queue WHERE Table_Name = '

→˓{tbl}' AND Error_str IS NOT NULL"
mx_name = DB.dbRead(qry,'Rainier')
if mx_name['mx'][0] == None:

max_name_date = dt.date(1900,1,1)
else:

yr, mo, day = mx_name['mx'][0].strip().split('_')
max_name_date = dt.date(int(yr),int(mo),int(day))

max_data_date = api.maxDateCluster(tbl)
max_date = max([max_path_date,max_name_date,max_data_date])

else:
last_path = df_ing['Path'].max()
path_date = last_path.split('.parquet')[0].rsplit(tbl+'_',1)[1]
yr, mo, day = path_date.split('_')
max_date = dt.date(int(yr),int(mo),int(day))

(continues on next page)

38 Chapter 10. Continuous Ingestion

cmapdata, Release 0.1.0

(continued from previous page)

return max_date

The date range to check data for is specific to each dataset depending on the temporal scale and typical delay in new data
availability from the data producer. For SSS data from REMSS, there is a NetCDF file for each day (timedelta(days=1)),
and new data is generally available on a two week delay.

Note: If new data has not been published by REMSS for a month or so, emailing their support account (sup-
port@remss.com) has been helpful to restart their processing job.

10.6.2 Process SSS Data

The first step of process_REMSS_SSS_cl1_continuous.py is to pull the list of all newly downloaded files. The tbl-
Process_Queue and tblIngestion_Queue tables only live on Rainier, so that server needs to be specified when retrieving
the new files ready for processing:

qry = f"SELECT Original_Name from tblProcess_Queue WHERE Table_Name = '{tbl}' AND Path␣
→˓IS NULL AND Error_Str IS NULL"
flist_imp = DB.dbRead(qry,'Rainier')
flist = flist_imp['Original_Name'].str.strip().to_list()

The schema of the newly downloaded NetCDF is compared against the oldest NetCDF in the vault. If any new columns
are added or renamed, the processing will exit and the data will not be ingested. After the NetCDF has gone through
all the processing steps, the schema of the finalized parquet file is checked against the oldest parquet file in the vault.
Again, if there are any differences the processing will exit and the data will not be ingested. This logic is present in
all continuously ingested (CI) datasets. Additional steps done for all CI datasets include: adding climatology columns,
updating tblProcessQueue with processing datetime, saving parquet file to vault, pushing parquet from vault to S3
bucket, and adding a new entry to tblIngestion_Queue.

Processing logic specific to SSS includes: pulling time from NetCDF coordinate, extracting single variable from
NetCDF (sss_smap), and mapping longitude from 0, 360 to -180, 180. Because SSS data is frequently accessed, it
is ingested into all on-prem servers, as well as the cluster.

A single parquet file is ingested into on-prem servers simultaneously using Pool. The current BCP wrapper creates a
temporary csv file with the table name and server name in it, to allow for multiple ingestions at once. The multipro-
cessing is not done on multiple files for the same dataset across servers as the current file naming convention could
cause clashes if overwritten.

The list of original file names is looped through for processing:

for fil in tqdm(flist):
x = xr.open_dataset(base_folder+fil)
df_keys = list(x.keys())
df_dims = list(x.dims)
if df_keys != test_keys or df_dims!= test_dims:

print(f"Check columns in {fil}. New: {df.columns.to_list()}, Old: {list(x.keys())}
→˓")

sys.exit()
x_time = x.time.values[0]
x = x['sss_smap']
df_raw = x.to_dataframe().reset_index()
df_raw['time'] = x_time

(continues on next page)

10.6. Sea Surface Salinity Walkthrough 39

mailto:support@remss.com
mailto:support@remss.com

cmapdata, Release 0.1.0

(continued from previous page)

x.close()
df = dc.add_day_week_month_year_clim(df_raw)
df = df[['time','lat','lon','sss_smap','year','month','week','dayofyear']]
df = df.sort_values(["time", "lat","lon"], ascending = (True, True,True))
df = dc.mapTo180180(df)
if df.dtypes.to_dict() != test_dtype:

print(f"Check data types in {fil}. New: {df.columns.to_list()}")
sys.exit()

fil_name = os.path.basename(fil)
fil_date = df['time'][0].strftime("%Y_%m_%d")
path = f"{nrt_folder.split('vault/')[1]}{tbl}_{fil_date}.parquet"
df.to_parquet(f"{nrt_folder}{tbl}_{fil_date}.parquet", index=False)
metadata.tblProcess_Queue_Process_Update(fil_name, path, tbl, 'Opedia', 'Rainier')
s3_str = f"aws s3 cp {tbl}_{fil_date}.parquet s3://cmap-vault/observation/remote/

→˓satellite/{tbl}/nrt/"
os.system(s3_str)
metadata.tblIngestion_Queue_Staged_Update(path, tbl, 'Opedia', 'Rainier')
a = [df,df,df]
b = [tbl,tbl,tbl]
c = ['mariana','rossby','rainier']
with Pool(processes=3) as pool:

result = pool.starmap(DB.toSQLbcp_wrapper, zip(a,b,c))
pool.close()
pool.join()

40 Chapter 10. Continuous Ingestion

CHAPTER

ELEVEN

USER SUBMITTED DATASET WALKTHROUGH

This example should walk you through the steps of ingesting a user submitted dataset into the database.

For this example, we are going to be using the dataset: Falkor_2018 - 2018 SCOPE Falkor Cruise Water Column
Data

11.1 Removal of Previously Existing Dataset

This dataset was an early submitted dataset and has recently been revised to bring it up to line with the current CMAP
data submission guidelines. The dataset was reviewed by CMAP data curators, which means the finalized updated
dataset will be found in the /final folder: Dropbox/Apps/<dataset_short_name>/final

Because this dataset already exists in the database, we must first remove the old version.

To do this, we can use some of the functionality in cmapdata/ingest/metadata.py

By calling this function deleteCatalogTables(tableName, db_name, server), we can remove any metadata and data
tables from a given server.

Warning: This function has drop privileges! Make sure you want to wipe the dataset metadata and table.

python metadata.py

>>> deleteCatalogTables('tblFalkor_2018','Rainier')

Continue this function for any other existing servers. ex. ‘Mariana’, ‘Rossby’

If only the metadata needs updating, calling the function deleteTableMetadata(tableName, db_name, server) will
remove all metadata associated with the dataset, but will not delete the data table.

11.2 Specifying the Ingestion Arguments

Using ingest/general.py, you can pass command line arguments to specify which server you wish to add the dataset to
as well as including a DOI. Because the DOI is a CMAP template, the optional flag -t is not necessary to include as the
default is true.

Navigate to the ingest/ submodule of cmapdata. From there, run the following in the terminal.

python general.py {table_name} {branch} {filename} {-d} {DOI link} {-l} {DOI download␣
→˓link} {-f} {DOI file name} {-S} {server}

41

cmapdata, Release 0.1.0

• {table_name}: Table name for the dataset. Must start with prefix “tbl”. Ex. tblFalkor_2018

• {branch}: Branch where dataset should be placed in Vault. Ex’s: cruise, float, station, satellite, model, assimi-
lation

• {filename}: Base file name in vault/staging/combined/. Ex.: ‘Falkor_2018.xlsx’

• {-d}: Optional flag for including DOI with dataset in tblReferences. DOI link string follows flag arg.

• {DOI link}: String for full web address of CMAP specific DOI. Ex. “https://doi.org/10.5281/zenodo.5208854”

• {-l}: Optional flag for including the DOI download link in tblDataset_DOI_Download. DOI dowload link string
follows flag.

• {DOI download link}: String for DOI download link of CMAP specific DOI. Ex. “https://zenodo.org/record/
5208854/files/tblFalkor_2018%20%282%29.xlsx?download=1”

• {-f}: Optional flag for DOI file name. DOI file name string follows flag.

• {DOI file name}: String for filename of CMAP specific DOI. Ex. “tblFalkor_2018 (2).xlsx”

• {-t}: Optional flag for denoting if DOI is a web validator template. Default value is 1.

• {DOI in CMAP template}: Boolean if DOI is a web validator template.

• {-S}: Required flag for specifying server choice. Server name string follows flag.

• {server}: Valid server name string. Ex. “Rainier”, “Mariana” or “Rossby”

An example string for full ingest would be:

python general.py tblFalkor_2018 cruise 'Falkor_2018.xlsx' -d 'https://doi.org/10.5281/
→˓zenodo.5208854' -l 'https://zenodo.org/record/5208854/files/tblFalkor_2018%20%282%29.
→˓xlsx?download=1' -f 'tblFalkor_2018 (2).xlsx' -S 'Rainier'

There are two additional arguments if you are only updating the metadata, and not reingesting the data table.

• {-U}: Optional flag for specifying updates to metadata only

• {-F}: Optional boolean depth flag. Default value is 0. Set to 1 if the data has a depth column

An example string for metadata update would be:

python general.py tblFalkor_2018 cruise 'Falkor_2018.xlsx' -d 'https://doi.org/10.5281/
→˓zenodo.5208854' -l 'https://zenodo.org/record/5208854/files/tblFalkor_2018%20%282%29.
→˓xlsx?download=1' -f 'tblFalkor_2018 (2).xlsx' -S 'Rainier' -F 1 -U

Behind the scenes, the script is doing:

1. Parsing the user supplied arguments.

2. Creates vault/ folder structure, syncs Dropbox, and transfers the files to vault/.

3. Splitting the data template into data, dataset_metadata and vars_metadata files. Saves metadata as parquet files
in /metadata folder.

4. Importing into memory the data, dataset_metadata and vars_metadata sheets as pandas dataframes.

5. Checks for presence of variables describing organism abundance based on units, short name, and long name. If
Org_ID is present in the variable metadata sheet, checks that Conversion_Coefficient aligns with units.

6. Checks values in data for outliers (+/- five times standard deviation) or invalid ranges for lat, lon, depth.

7. Creating a suggested SQL table and index based on the infered data.

8. Insert data into newly created table.

42 Chapter 11. User Submitted Dataset Walkthrough

https://doi.org/10.5281/zenodo.5208854
https://zenodo.org/record/5208854/files/tblFalkor_2018%20%282%29.xlsx?download=1
https://zenodo.org/record/5208854/files/tblFalkor_2018%20%282%29.xlsx?download=1

cmapdata, Release 0.1.0

9. Insert metadata into various metadata tables, match cruises and classify ocean region(s).

10. Create summary stats and insert into tblDataset_Stats.

11. Add server alias to tblDataset_Servers.

12. Create dataset icon and push to github.

Once the ingestion completes without any errors, check the catalog to see if the table is visable. It is also advisable to
try to plot one or more variables, download the full datasets, as well as a subset.

Note: See the future code changes section for ideas on improvements.

11.2. Specifying the Ingestion Arguments 43

cmapdata, Release 0.1.0

44 Chapter 11. User Submitted Dataset Walkthrough

CHAPTER

TWELVE

OUTSIDE SMALL DATASET WALKTHROUGH

Datasets from outside sources do not follow CMAPs data guidelines and vary drastically in quality of metadata. Many
dataset have variables that are not self explanatory and may have data flags or conventions that will take some work
to understand. One of the best resources is the rest of the Armbrust lab, which has tons of oceanography domain
knowledge and experience working with these datasets. Additionally, contacting the dataset owner/provider can also
provide insight.

In this example, we are going to walkthrough collecting, processing and ingesting a small outside dataset into CMAP.

Recently, we wanted to add multiple datasets from the CMORE-BULA cruise that traveled from Hawaii south to Fiji.
These data were available on the HOT (Hawaii Ocean Time-series) FTP site.

12.1 Collecting a small dataset from an FTP site using wget

From the UH CMORE-BULA site: https://hahana.soest.hawaii.edu/cmorebula/cmorebula.html there are links for data
access. Each of these leads you to an FTP site.

The FTP site for the CMORE-BULA CTD dataset contains 46 individual CTD casts. Instead of downloading them all
by hand, we can use some functionality from the wget command line tool.

To keep a record of dataset processing, it is a good idea to create a collect_{dataset_name}.py script in the collect/
submodule of cmapdata. For this example, we have created a directory with the tree structure:

insitu
cruise

misc_cruise
(continues on next page)

45

https://hahana.soest.hawaii.edu/cmorebula/cmorebula.html

cmapdata, Release 0.1.0

46 Chapter 12. Outside Small Dataset Walkthrough

cmapdata, Release 0.1.0

(continued from previous page)

KM0704_CMORE_BULA
collect_KM0704_CMORE_BULA.py

For each dataset in this cruise (CTD, underway, underway sample, bottle & wind), we can collect any files using wget.

For CTD we can write a download function using wget and pass the FTP link for the CTD files. Using wget, we can
specify the output directory.

odir = vs.cruise + "tblKM0704_CMORE_BULA/raw/"

def download_KM0704_data(outputdir, download_link):
wget_str = f"""wget -P '{outputdir}' -np -R "'index.html*" robots=off -nH --cut-dirs␣

→˓8 -r {download_link}"""
os.system(wget_str)

#download ctd
download_KM0704_data(

odir + "CTD/", "https://hahana.soest.hawaii.edu/FTP/cmore/ctd/bula1/"
)

For all the datasets in CMORE-BULA, this process would need to be repeated.

12.2 Processing a small dataset

Now that the CTD files have been collected, we can begin processing them. Once again, we are going to create a
dataset/collection specific file for a record. In this example, we will call it process_KM0704_CMORE_BULA.py This
should be placed in the process/ submodule of cmapdata.

insitu
cruise

misc_cruise
KM0704_CMORE_BULA

process_KM0704_CMORE_BULA.py

The full CTD processing steps can be found in this file, but in summary they are:

1. Use the glob library to create a list of all .ctd files collected previously.

2. Iterate thorough list

• read csv into pandas dataframe

• replace ‘-9’ missing values with np.nan

• extract station,cast,cast direction and num_observations from filename using string splitting.

• create new columns of variable specific quality flags out of strange combined flag column.

• drop unneeded columns

• append data

3. concatenate cleaned data into Pandas Dataframe

Other datasets in the CMORE-BULA cruise required additional processing. Some required time and depth formatting.
Others were missing spatio-temporal coordinates, which had to be collected using spatial or station/cast # joins to the
other datasets.

12.2. Processing a small dataset 47

cmapdata, Release 0.1.0

Once all the data are processed, the can be exported to dropbox/../vault/observation/in-
situ/cruise/tblKM0704_CMORE_BULA/raw where dataset and variable metadata sheets can be added. Once
these are complete, the dataset should run through the validator. From here, follow the steps outlined in the user
submitted datasets walkthrough section to ingest the data into the database.

48 Chapter 12. Outside Small Dataset Walkthrough

CHAPTER

THIRTEEN

OUTSIDE LARGE DATASET WALKTHROUGH

Outside large datasets require similar collecting/processing methods to outside small datasets, however the ingestion
strategy can differ. In this section, we will outline examples of collecting, processing and ingesting two large outside
datasets.

13.1 Argo Float Walkthrough

The ARGO float array is a multi-country program to deploy profiling floats across the global ocean. These floats provide
a 3D insitu ocean record. The CORE argo floats provide physical ocean parameters, while the BGC (Biogeochemical)
specific floats provide Biogeochemical specific variables (nutrients, radiation etc.).

These Argo datasets are a part of the continuous ingestion project, but differ in process as each month will create a new
table for each dataset.

13.1.1 Argo Data Collection

ARGO float data are distributed through two main DAAC’s. Individual files can be accessed directly from FTP servers
from each DAAC. Alternatively, a zipped file of all float records updated monthly can be found at: https://www.seanoe.
org/data/00311/42182/. These are released on the 10th of every month.

To keep a record of the collection, we will create a collect_{dataset_name}.py file.

import vault_structure as vs
import os

def downloadArgo(newmonth, tar_url):
"""Download Argo tar file. Creates new vault tables based on newmonth stub
Args:

newmonth (string): Month and year of new data used as table suffix (ex. Sep2023)
tar_url (string): URL pointing to tar download for newest data (ex. https://www.

→˓seanoe.org/data/00311/42182/data/104707.tar.gz)
"""
tbl_list = [f'tblArgoCore_REP_{newmonth}',f'tblArgoBGC_REP_{newmonth}']
for tbl in tbl_list:

vs.leafStruc(vs.float_dir+tbl)
base_folder = f'{vs.float_dir}{tbl}/raw/'
output_dir = base_folder.replace(" ", "\\ ")
os.system(f"""wget --no-check-certificate {tar_url} -P {output_dir}""")

49

https://www.seanoe.org/data/00311/42182/
https://www.seanoe.org/data/00311/42182/

cmapdata, Release 0.1.0

50 Chapter 13. Outside Large Dataset Walkthrough

cmapdata, Release 0.1.0

The raw data will be saved in dropbox/../vault/observation/in-situ/float/tblArgoBGC_REP_{newmonth}/raw This
file will need to be unzipped, either using python or bash. The functions for doing so in Python are in pro-
cess_ARGO_BGC_Sep2023.py

Once the data has been unzipped, there are four subfolders:

aux
dac
doc
geo

dac contains the data. Descriptions for the rest can be found in the argo data handbook (http://dx.doi.org/10.13155/
29825).

The dac subfolder contains 11 daacs/distributors. Each of these contains zipped files.

To unzip and organize these by BGC and Core. The following scripts were run as part of process_ARGO.py

def unzip_and_organize_BGC():
vs.makedir(argo_base_path + "BGC/")
os.chdir(argo_base_path)
for daac in tqdm(daac_list):

os.system(
f"""tar -xvf {daac}_bgc.tar.gz -C BGC/ --transform='s/.*\///' --wildcards --

→˓no-anchored '*_Sprof*'"""
)

A similar function is then run for the Core files.

13.1.2 Argo Data Processing

Once the data collection is complete, we can start processing each argo netcdf file. To keep a record, we will create a
record in the process/ submodule of cmapdata.

insitu
float

ARGO
process_ARGO.py

Since BGC specific floats and Core floats contain different sets of variables, the processing has been split into two
scripts.

Detailed processing steps for the argo core and bgc can be found in process_ARGO_BGC_Sep2023.py and pro-
cess_ARGO_Core_Sep2023. The processing is done with Pool from the multiprocessing library. The rough processing
logic is outlined below:

1. Use the glob library to create a list of all netcdf files in the BGC directory.

2. Iterate thorough list

• import netcdf with xarray

• decode binary xarray column data

• export additional metadata cols for future unstructured metadata

• drop unneeded metadata cols

• checks no new columns are present this month

13.1. Argo Float Walkthrough 51

http://dx.doi.org/10.13155/29825
http://dx.doi.org/10.13155/29825

cmapdata, Release 0.1.0

• convert xarray to dataframe and reset index

• add a depth specific column calculated from pressure and latitude using python seawater library

• rename Space-Time columns

• format datetime

• drop any duplicates create by netcdf multilevel index

• drop any invalid ST rows (rows missing time/lat/lon/depth)

• sort by time/lat/lon/depth

• add climatology columns

• reorder columns and add any missing columns

• replace any inf or nan string values with np.nan (will go to NULL in SQL server)

• strips any whitespace from string col values

• removes nan strings before setting data types

• checks there is data in dataframe before exporting parquet file to /rep folder

Because the data will only live on the cluster, the fastest way to calculate stats for such a large dataset is to aggregate
the values from each processed parquet file. Once all NetCDF files have been processed and parquet files saved to /rep,
the following steps are completed:

1. Read each parquet file into a pandas dataframe

2. Query the dataframe to remove space and time data flagged as “bad” (_QC = 4)

3. Calculate min/max for each field with describe()

4. Append min/max values for each file to a stats dataframe

5. Export stats dataframe to /stats directory to be used during dataless ingestion

Before passing off for ingestion to the cluster, run through each processed parquet file to ensure the schema matches
across all files. Past errors have been caused by empty parquet files and empty columns in one profile that are string
data types in other profiles. Reading a parquet file into a dataframe and checking for matches is not suffient as pandas
can read data types differently than the cluster will. The most successful checks to date were completed using pyarrow
and pyarrow.parquet.

Warning: Any schema error in a single parquet file will cause the bulk ingestion to fail

The last step for all process scripts is to copy the GitHub URL for the script to the /code folder in the vault. The example
below calls the metadata.export_script_to_vault function and saves a text file named “process” in the dataset’s code
folder in the vault.

metadata.export_script_to_vault(tbl,'float_dir',f'process/insitu/float/ARGO/process_Argo_
→˓BGC_{date_string}.py','process.txt')

52 Chapter 13. Outside Large Dataset Walkthrough

cmapdata, Release 0.1.0

Bulk Ingestion to the Cluster

Due to the size of the Argo datasets, and the monthly creation of a new dataset, both Argo Core and Argo BGC only
live on the cluster. After all parquet files are created and checked for matching schemas, a bulk ingestion will be done
to create the new tables on the cluster.

Creating and Ingesting Metadata

Once the bulk ingest is complete on the cluster, the metadata can be added. All dataset ingestion using general.py (see
cruise ingestion for differences) pulls metadata from a folder named “final” within the validator folders in DropBox.
For large datasets, you will still need to submit a template to the validator. In order to pass the validator tests you will
need to include a minimum of one row of data in the data sheet. The values can all be placeholders, but must contain
some value.

If no new variables have been added, the data curation team does not need to re-run the QC API. Use the last month’s
metadata for Argo and update the dataset_meta_data tab with new values for dataset_short_name, dataset_long_name,
dataset_version, dataset_release_date, and dataset_references. In the vars_meta_data tab, replace old references of
dataset names in the variable keywords to current month. These keywords are usually assigned by the QC API.

After submitting through the validator, create a folder named final in dropbox../Apps/Simons CMAP Web Data
Sunmission/ARGO_BGC_Sep2023 and copy the submitted template into /final for ingestion.

To ingest the metadata only, you can use ingest/general.py

Navigate to the ingest/ submodule of cmapdata. From there, run the following in the terminal. Because the DOI for the
Argo datasets is already in the references column in the dataset_meta_data tab of the metadata template, you do not
need to use the {-d} flag with ingestion.

python general.py {table_name} {branch} {filename} {-S} {server} {-a} {data_server} {-i}
→˓{icon_filename} {-F} {-N}

• {table_name}: Table name for the dataset. Must start with prefix “tbl”. Ex. tblArgoBGC_REP_Sep2023

• {branch}: Branch where dataset should be placed in Vault. Ex’s: cruise, float, station, satellite, model, assimi-
lation

• {filename}: Base file name in vault/staging/combined/. Ex.: ‘global_diazotroph_nifH.xlsx’

• {-S}: Required flag for specifying server choice for metadata. Server name string follows flag.

• {server}: Valid server name string. Ex. “Rainier”, “Mariana” or “Rossby”

• {-a}: Optional flag for specifying server name where data is located

• {data_server}: Valid server name string. Ex. “Rainier”, “Mariana”, “Rossby”, or “Cluster”

• {-i}: Optional flag for specifying icon name instead of creating a map thumbnail of the data

• {icon_filename}: Filename for icon in Github instead of creating a map thumbnail of data. Ex: argo_small.jpg

• {-F}: Optional flag for specifying a dataset has a valid depth column. Default value is 0

• {-N}: Optional flag for specifying a ‘dataless’ ingestion or a metadata only ingestion.

An example string for the September 2023 BGC dataset is:

python general.py tblArgoBGC_REP_Sep2023 float 'ARGO_BGC_Sep2023.xlsx' -i 'argo_small.jpg
→˓' -S 'Rossby' -N -a 'cluster' -F 1

13.1. Argo Float Walkthrough 53

cmapdata, Release 0.1.0

Removing Old Argo Data

Once a new month of Argo data is accessible on the CMAP website, a previous month can be retired. The current plan
is to keep three months of Argo data available to users. For example, with the addition of September data, the June data
can be deleted from the vault. The data needs to be removed from the cluster before the parquet files are deleted from
Dropbox. Metadata for the retired month can be removed from the CMAP catalog before the parquet files are deleted,
if need be. This can be done using the following function in metadata.py:

54 Chapter 13. Outside Large Dataset Walkthrough

CHAPTER

FOURTEEN

GEOTRACES SEAWATER WALKTHROUGH

The Geotraces Seawater dataset is unique for two reasons: 1. The data table contains >1,024 columns which is the max
allowed by SQL Server 2. The data producers requested the inclusion of unstructured metatdata

14.1 Geotraces Overview

Geotraces IDP2021v2 contains 5 datasets: Seawater, Sensor, Precipitation, Aerosols, and Cryosphere. Only Seawater
and Aerosols have updated data in v2, but the download link includes the v1 data for the remaining 3 datasets. Based
on discussions with the Geotraces data team, there are no plans to update the remaining 3 datasets to v2. The second
version includes additional cruises and fixes to multiple errors found in v1. The full list of fixes can be found here:
https://www.bodc.ac.uk/geotraces/data/idp2021/documents/geotraces_idp2021v2_changes.pdf

14.1.1 Geotraces Data Collection

A zipped file of all five GEOTRACES datasets can be found on BODC: https://www.bodc.ac.uk/data/published_data_
library/catalogue/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e/

The raw data will be saved in dropbox/../vault/observation/in-situ/cruise/tblGeotraces_{dataset_name}/raw These
files will need to be unzipped, saving to each dataset’s raw folder. Copies of the included PDFs are moved to the
/metadata folder. The script to download the data and unzip the raw data into each of the 5 dataset folders in the vault
is here: ../cmapdata/collect/insitu/cruise/GEOTRACES/collectGeotraces_v2.py

In addition to a NetCDF for each dataset, Geotraces also includes an infos folder. Within that folder is a static html file
for each cruise and variable combination that metadata was submitted for. These are scraped to populate the variable-
level unstructured metadata (UM) which is described in detail below.

14.1.2 Geotraces Seawater Processing

Detailed processing steps for the Seawater dataset can be found in pro-
cess/insitu/cruise/GEOTRACES/process_Geotraces_Seawater_IDP2021v2.py. The rough processing logic is
outlined below:

• import netcdf with xarray

• loop through netcdf metadata and export to Geotraces_Seawater_Vars.xlsx to build out the vars_metadata sheet
for validator

• decode binary xarray column data

• change flag values from ASCII to int / string values based on Geotraces request

• rename depth field as it contains nulls

55

https://www.bodc.ac.uk/geotraces/data/idp2021/documents/geotraces_idp2021v2_changes.pdf
https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e/
https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e/

cmapdata, Release 0.1.0

• build suggested SQL table based on netcdf data types

• convert xarray to dataframe and reset index

• add a depth specific column calculated from pressure and latitude using python seawater library

• rename Space-Time columns

• format datetime

• map longitude values from 0, 360 to -180, 180

• drop any invalid ST rows (rows missing time/lat/lon/depth)

• reorder columns and sort by time/lat/lon

• create two temp tables in SQL

• split dataframe in two, retaining the initial 17 metadata columns in both

• ingest split dataframes into two temp tables

• insert into final table with column set

• drop two temporary tables

Ingestion to the Database

Geotraces_Seawater_IDP2021v2 includes 1186 variables which exceeds the limit SQL server allows to be held within
a single table. Due to the nature of how the data is organized, much of the data is sparse, as not every cruise collected
data for each variable.

An example of the syntax to create a column set for sparse columns is shown below. Not all columns in the full create
table script are show here.

CREATE TABLE [dbo].[tblGeotraces_Seawater_IDP2021v2](
[time] [datetime] NOT NULL,
[lat] [float] NOT NULL,
[lon] [float] NOT NULL,
[N_SAMPLES] [int] NULL,
[N_STATIONS] [int] NULL,
[cruise_id] [nvarchar](6) NULL,
[station_id] [nvarchar](26) NULL,
[station_type] [nvarchar](1) NULL,
[Bot__Depth] [float] NULL,
[Operator_s_Cruise_Name] [nvarchar](13) NULL,
[Ship_Name] [nvarchar](20) NULL,
[Period] [nvarchar](23) NULL,
[Chief_Scientist] [nvarchar](31) NULL,
[GEOTRACES_Scientist] [nvarchar](77) NULL,
[Cruise_Aliases] [nvarchar](14) NULL,
[Cruise_Information_Link] [nvarchar](75) NULL,
[BODC_Cruise_Number] [float] NULL,
[CSet] [xml] COLUMN_SET FOR ALL_SPARSE_COLUMNS NULL,
[CTDPRS_T_VALUE_SENSOR] [float] SPARSE NULL,
[CTDPRS_T_VALUE_SENSOR_qc] [nvarchar](1) SPARSE NULL,
[DEPTH_SENSOR] [float] SPARSE NULL,
[DEPTH_SENSOR_qc] [nvarchar](1) SPARSE NULL,

(continues on next page)

56 Chapter 14. Geotraces Seawater Walkthrough

cmapdata, Release 0.1.0

(continued from previous page)

...
) ON [FG3]

In order to successfully ingest into the column set, the data needs to be unioned from the two temp tables described
above into the full table. BCP directly into the table with the column set fails.

Add New Cruises

The first version of Geotraces included data for multiple cruises that were not in CMAP. See the cruise ingestion for
details on the template specific for adding cruise metadata and trajectories. Most US-based cruises can be found on the
following websites:

• R2R: https://www.rvdata.us/browse_vessels

• SAMOS: https://samos.coaps.fsu.edu/html/cruise_data_availability.php

• BODC: https://www.bodc.ac.uk/data/bodc_database/nodb/search/

• UNOLS: https://strs.unols.org/Public/Search/diu_ships.aspx

It is always preferred to use navigation or underway data for a cruise trajectory. In rare cases this data is not publicly
available and sample locations can be used instead. Geotraces provides an API endpoint for sample locations that is
“live (or close to) dynamically created data from Geotraces databases”.

The collection script for the new cruises in v2 can be found here: cmap-
data/collect/insitu/cruise/GEOTRACES/collectGeotraces_sample_locations_v2.py

The processing script for the the new cruises can be found here: cmap-
data/process/insitu/cruise/GEOTRACES/process_Geotraces_trajectories_v2.py

The processing script creates the excel template needed for cruise trajectory ingestion. The metadata details for each
cruise was pulled from IDP2021v2_Cruises.pdf, which is included in download provided by Geotraces. The final
template is saved to the vault here: ../vault/r2r_cruise/{cruise_name}/raw/{cruise_name}_cruise_meta_nav_data.xlsx

An example ingestion string for a new cruise is:

python general.py "SAG25_cruise_meta_nav_data.xlsx" -C SAG25 -S "Rossby" -v True

The {-v} flag tells the ingestion script to look in the raw folder of the vault, instead of pulling from Apps validator
folder.

Creating and Ingesting Metadata

The Geotraces NetCDFs contain metadata that can be used to build out the vars_meta_data sheet for validator submis-
sion. This includes variable short name (Geotraces requested we maintain their variable short names), long names, and
flag values. Below is syntax used to loop through the variables and create an initial spreadsheet of provided metadata:

tbl = 'tblGeotraces_Seawater_IDP2021v2'
meta_folder = f'{vs.cruise}{tbl}/metadata/'
n = f'{vs.cruise}{tbl}/raw/GEOTRACES_IDP2021_Seawater_Discrete_Sample_Data_v2.nc'
x = xr.open_dataset(n)

d1 = {'var_name':[], 'std_name':[], 'long_name':[], 'dtype':[], 'units':[], 'comment':[],
→˓ 'flag_val':[], 'flag_def':[]}
df_varnames = pd.DataFrame(data=d1)

(continues on next page)

14.1. Geotraces Overview 57

https://www.rvdata.us/browse_vessels
https://samos.coaps.fsu.edu/html/cruise_data_availability.php
https://www.bodc.ac.uk/data/bodc_database/nodb/search/
https://strs.unols.org/Public/Search/diu_ships.aspx

cmapdata, Release 0.1.0

(continued from previous page)

for varname, da in x.data_vars.items():
dtype = da.data.dtype
if 'flag_values' in da.attrs.keys():

fl_val = da.attrs['flag_values'].tolist()
fl_def = da.attrs['flag_meanings']

else:
fl_val = None
fl_def = None

if 'long_name' in da.attrs.keys():
long_name = da.attrs['long_name']

else:
long_name = None

if 'standard_name' in da.attrs.keys():
std_name = da.attrs['standard_name']

else:
std_name = None

if 'comment' in da.attrs.keys():
comment = da.attrs['comment']

else:
comment = None

if 'units' in da.attrs.keys():
units = da.attrs['units']

else:
units = None

d1 = {'var_name':[varname], 'std_name':[std_name], 'long_name':[long_name], 'dtype
→˓':[dtype], 'units':[units], 'comment':[comment], 'flag_val':[fl_val], 'flag_def':[fl_
→˓def]}

temp_df = pd.DataFrame(data=d1)
df_varnames = df_varnames.append(temp_df, ignore_index=True)

df_varnames.to_excel(meta_folder +'Geotraces_Seawater_Vars.xlsx', index=False)

With so many variable names, a significant amount of additional work is needed to clean up this initial spreadsheet.
All variable long names should be title case. Specifically for Geotraces, there were many instances when the metadata
in the NetCDF was truncated. Holes were filled in by referring to the relevant static HTML files included in the infos
folder, later used to scrape for UM.

All dataset ingestion using general.py (see cruise ingestion for differences) pulls metadata from a folder named “final”
within the validator folders in DropBox. For large datasets, you will still need to submit a template to the validator. In
order to pass the validator tests you will need to include a minimum of one row of data in the data sheet. The values
can all be placeholders, but must contain some value. After the data curation team run the QC API to add the necessary
keywords, they will include the finalized template to Apps/Geotraces_Seawater_IDP2021v2/final.

To ingest the metadata only, you can use ingest/general.py

Navigate to the ingest/ submodule of cmapdata. From there, run the following in the terminal. Because the DOI for the
Argo datasets is already in the references column in the dataset_meta_data tab of the metadata template, you do not
need to use the {-d} flag with ingestion.

python general.py {table_name} {branch} {filename} {-S} {server} {-a} {data_server} {-i}
→˓{icon_filename} {-F} {-N}

58 Chapter 14. Geotraces Seawater Walkthrough

cmapdata, Release 0.1.0

• {table_name}: Table name for the dataset. Must start with prefix “tbl”. Ex. tblArgoBGC_REP_Sep2023

• {branch}: Branch where dataset should be placed in Vault. Ex’s: cruise, float, station, satellite, model, assimi-
lation

• {filename}: Base file name in vault/staging/combined/. Ex.: ‘global_diazotroph_nifH.xlsx’

• {-S}: Required flag for specifying server choice for metadata. Server name string follows flag.

• {server}: Valid server name string. Ex. “Rainier”, “Mariana” or “Rossby”

• {-i}: Optional flag for specifying icon name instead of creating a map thumbnail of the data

• {icon_filename}: Filename for icon in Github instead of creating a map thumbnail of data. Ex: argo_small.jpg

• {-F}: Optional flag for specifying a dataset has a valid depth column. Default value is 0

• {-N}: Optional flag for specifying a ‘dataless’ ingestion or a metadata only ingestion.

An example string for the September 2023 BGC dataset is:

python general.py tblGeotraces_Seawater_IDP2021v2 cruise 'Geotraces_Seawater_IDP2021v2.
→˓xlsx' -i 'tblGeotraces_Sensor.jpg' -S 'Rossby' -N

Creating and Ingesting Unstructured Metadata

The unstructured metadata (UM) for v1 of Geotraces Seawater was provided by Jesse McNichol. As there were addi-
tional cruises and variables in v2, a new set of UM needed to be scraped from the static HTML files included in the
Geotraces data download.

The file naming convention for the HTML files is {cruise_name}_{variable_short_name}.html

The files were scraped using BeautifulSoup. The cruise name and variable name were parsed from the file name. The
Geotraces data team requested we include the BODC documentation links on methods for each variable and cruise.
Additional links to cruise information are also included in the html files, but were not requested. These can be added
to the future iteration of the cruise page if the new designs include UM for cruises.

For details on the unstructured metadata project see Jira the following tickets: (https://simonscmap.atlassian.net/
browse/CMAP-563, https://simonscmap.atlassian.net/browse/CMAP-572). Each unstructured metadata object in-
cludes a value array and a description array. Values and descriptions are always arrays, even if empty or single values.
Also, these arrays must always have identical lengths, even if descriptions are empty strings. Descriptions are meant to
be human readable, short descriptions akin to alt-text for an image online. A single variable may have multiple entries
in tblVariables_JSON_Metadata. An example of a variable-level unstructured metadata is:

{"cruise_names":{"values":["PS71"],"descriptions":["Operators Cruise Name"]},"meta_links
→˓":{"values":["https://www.bodc.ac.uk/data/documents/nodb/285421/"],"descriptions":[
→˓"BODC documentation link"]}}

The script for creating UM for Geotraces Seawater is here: ..cmapdata/process/insitu/cruise/GEOTRACES/scrape_Geotraces_Seawater_UM.py

Only one entry was requested by the Geotraces data team for dataset level metadata:

{"publication_link":{"values":["https://www.geotraces.org/geotraces-publications-
→˓database/"],"descriptions":["Link to database of GEOTRACES publications"]}}

The dataset-level UM is ingested in the scrape script using DB.toSQLpandas(). The variable-level UM is ingested using
DB.toSQLbcp_wrapper(), though requires a final update to fix BCP including additional quotes, causing the JSON to
no longer be valid:

14.1. Geotraces Overview 59

https://simonscmap.atlassian.net/browse/CMAP-563
https://simonscmap.atlassian.net/browse/CMAP-563
https://simonscmap.atlassian.net/browse/CMAP-572

cmapdata, Release 0.1.0

qry = """UPDATE tblVariables_JSON_Metadata SET json_metadata =␣
→˓replace(replace(replace(json_metadata,'""','"'), '"{','{'), '}"','}')"""
DB.DB_modify(qry, server)

You can check for invalid JSON in tblVariables_JSON_Metadata and tblDatasets_JSON_Metadata with the following:

SELECT * FROM tblVariables_JSON_Metadata WHERE ISJSON(JSON_Metadata) = 0

60 Chapter 14. Geotraces Seawater Walkthrough

CHAPTER

FIFTEEN

MESOSCALE EDDY DATA WALKTHROUGH

15.1 Mesoscale Eddy Version History

The first version of Mesoscale Eddy data in CMAP was v2.0 provided by AVISO. Upon the release of
v3.2, the version in CMAP was no longer being updated by AVISO and recommended to discontinue
the use of v2 (https://ostst.aviso.altimetry.fr/fileadmin/user_upload/OSTST2022/Presentations/SC32022-A_New_
Global_Mesoscale_Eddy_Trajectory_Atlas_Derived_from_Altimetry___Presentation_and_Future_Evolutions.pdf).

A video descibing the differences in versions can be found here: https://www.youtube.com/watch?v=4Vs3ZJNMViw

When data providers reprocess historic data so that it no longer aligns with data already ingested in CMAP, a new
dataset for CMAP needs to be created. In this case, since AVISO provided a new name to their dataset (v3.2), the
change did not fall under CMAP’s internal change log naming convention (see continuous ingestion section for more
details). AVISO’s documentation notes updates are done “multiple times a year”, and they create a new DOI for each
temporal extension. They don’t change their naming convention with temporal extensions, so any updates will result
in a new change log table name.

While v2.0 consisted of one dataset, v3.2 included two datasets (allsat/twosat) are different enough such that AVISO
decided to create two releases. Within each of these two datasets there is data for three types of eddies (long, short,
untracked) describing the lifetime of an eddy, each split into two NetCDF files (cyclonic, anticyclonic). The 12 provided
NetCDF files were ingested into 6 datasets described below.

15.1.1 Mesoscale Eddy Data Collection

AVISO provides data download through their FTP service which requires a login.

In order to keep all raw data in their respective folders, the first step is to create the 6 new dataset folders in the vault:

from ingest import vault_structure as vs

tbl = 'tblMesoscale_Eddy_'
sat_list = ['twosat','allsat']
ln_list = ['untracked', 'short', 'long']
for sat in sat_list:

for ln in ln_list:
vs.leafStruc(vs.satellite+tbl+sat+'s_'+ln)

Each individual NetCDF is then downloaded into the corresponding dataset’s /raw folder in the vault:

cyc_list = ['Cyclonic', 'Anticyclonic']
for sat in sat_list:

for ln in ln_list:
(continues on next page)

61

https://ostst.aviso.altimetry.fr/fileadmin/user_upload/OSTST2022/Presentations/SC32022-A_New_Global_Mesoscale_Eddy_Trajectory_Atlas_Derived_from_Altimetry___Presentation_and_Future_Evolutions.pdf
https://ostst.aviso.altimetry.fr/fileadmin/user_upload/OSTST2022/Presentations/SC32022-A_New_Global_Mesoscale_Eddy_Trajectory_Atlas_Derived_from_Altimetry___Presentation_and_Future_Evolutions.pdf
https://www.youtube.com/watch?v=4Vs3ZJNMViw

cmapdata, Release 0.1.0

(continued from previous page)

base_folder = f'{vs.satellite}{tbl}{sat}s_{ln}/raw/'
print(base_folder)
os.chdir(base_folder)
for cyc in cyc_list:

url_base = f"ftp://dharing@uw.edu:NBxOn4@ftp-access.aviso.altimetry.fr/value-
→˓added/eddy-trajectory/delayed-time/META3.1exp_DT_{sat}/META3.1exp_DT_{sat}_{cyc}_{ln}_
→˓19930101_20200307.nc"

urllib.request.urlretrieve(url_base, base_folder+f'META3.1exp_DT_{sat}_{cyc}_
→˓{ln}_19930101_20200307.nc')

15.1.2 Mesoscale Eddy Processing

Each NetCDF files includes 50 samples per observation. The lat and lon of the centroid don’t change per sample
and most have the same values within an observation. These variables have small differences across samples in an
observation: effective_contour_lat, effective_contour_longitude, speed_contour_latitude, speed_contour_longitude,
uavg_profile. Due to duplication of lat/lon and small varations across a subset of variables, each dataset was subset for
sample = 0.

The processing logic for each NetCDF is outlined below:

• import netcdf with xarray, selecting where NbSample = 0

• loop through netcdf metadata and export to AVISO_Eddy32_allsats_Vars.xlsx to build out the
vars_metadata sheet for validator

• call SQL.full_SQL_suggestion_build() to create SQL tables

• loop through both NetCDFs per dataset

• rename lat and lon, drop obs field

• add column eddy_polarity based on Anticyclonic vs Cyclonic file

• add climatology fields

• map longitude values from 0, 360 to -180, 180

• ingest with DB.toSQLbcp_wrapper()

15.1.3 Creating and Ingesting Metadata

All dataset ingestion using general.py (see cruise ingestion for differences) pulls metadata from a folder named “final”
within the validator folders in DropBox. For large datasets, you will still need to submit a template to the validator. In
order to pass the validator tests you will need to include a minimum of one row of data in the data sheet. The values
can all be placeholders, but must contain some value. After the data curation team run the QC API to add the necessary
keywords, they will include the finalized template to Apps/Mesoscale_Eddy_*/final.

To ingest the metadata only, you can use ingest/general.py

Navigate to the ingest/ submodule of cmapdata. From there, run the following in the terminal. Because the DOI for the
Mesoscale Eddy datasets is already in the references column in the dataset_meta_data tab of the metadata template,
you do not need to use the {-d} flag with ingestion.

python general.py {table_name} {branch} {filename} {-S} {server} {-a} {data_server} {-i}
→˓{icon_filename} {-F} {-N}

• {table_name}: Table name for the dataset. Must start with prefix “tbl”. Ex. tblArgoBGC_REP_Sep2023

62 Chapter 15. Mesoscale Eddy Data Walkthrough

cmapdata, Release 0.1.0

• {branch}: Branch where dataset should be placed in Vault. Ex’s: cruise, float, station, satellite, model, assimi-
lation

• {filename}: Base file name in vault/staging/combined/. Ex.: ‘global_diazotroph_nifH.xlsx’

• {-S}: Required flag for specifying server choice for metadata. Server name string follows flag.

• {server}: Valid server name string. Ex. “Rainier”, “Mariana” or “Rossby”

• {-i}: Optional flag for specifying icon name instead of creating a map thumbnail of the data

• {icon_filename}: Filename for icon in Github instead of creating a map thumbnail of data. Ex: argo_small.jpg

• {-F}: Optional flag for specifying a dataset has a valid depth column. Default value is 0

• {-N}: Optional flag for specifying a ‘dataless’ ingestion or a metadata only ingestion.

• {-v}: Optional flag denoting if metadata template is present in the raw folder of the vault

• {in_vault}: If True, pulls template from vault. Default is False, which pulls from /final folder in Apps folder
created after submitting to the validator

These datasets were ingested before the QC API was written. The use of the vault flag for datasets should no longer be
used as all metadata should go through the API, at minimum for the automatic addition of all the keywords.

An example string used for a Mesoscale Eddy dataset is:

python general.py tblMesoscale_Eddy_allsats_long satellite 'tblMesoscale_Eddy_allsats_
→˓long.xlsx' -i 'chelton_aviso_eddy.png' -S 'Rossby' -v True -N

15.1. Mesoscale Eddy Version History 63

cmapdata, Release 0.1.0

64 Chapter 15. Mesoscale Eddy Data Walkthrough

CHAPTER

SIXTEEN

INGESTING CRUISE METDATA AND TRAJECTORY

CMAP contains cruise trajectories and metadata stored in seperate tables (tblCruise and tblCruise_Trajectory). These
allow us to visualize cruise tracks on map, colocalize datasets with cruise tracks and links datasets to specific cruises.

A cruise ingestion template should contain two sheets. One for cruise metadata and another for cruise trajectory.

16.1 Metadata Sheet

Nickname Name Ship_Name Chief_Name Cruise_Series
< Ship Nickname
(ex. Gradients 3)
>

< UNOLS
Cruise Name
(ex. KM1906) >

< Official Ship
Name (ex. Kilo
Moana) >

< Chief Scientist Name
(ex. Ginger Armbrust)
>

< opt. Cruise Se-
ries (ex. Gradi-
ents/HOT/etc.) >

The metadata sheet contains cruise metadata that will populate tblCruise. The ST bounds will be filled in with the
ingestion process.

16.2 Trajectory Sheet

time lat lon
< Format %Y-%m-%dT%H:%M:%S,
Time-Zone: UTC, example: 2014-02-
28T14:25:55 >

< Format: Decimal (not military
grid system), Unit: degree, Range:
[-90, 90] >

< Format: Decimal (not military
grid system), Unit: degree, Range:
[-180, 180] >

The trajectory sheet contains ST information of the cruise. This should have enough points to give an accurate cruise
trajectory, without having too high a sampling interval. A good target might be minute scale.

16.3 Ingesting Cruise Templates

Similar to how datasets are ingested into CMAP, we can use the functionallity in the ingest subpackage.

Completed crusie templates should start the ingestion process in ‘/CMAP Data Submission Dropbox/Simons
CMAP/vault/r2r_cruise/{cruise_name}/{cruise_name_template.xlsx}’

Using ingest/general.py, you can pass command line arguments to specify a cruise ingestion as well as a server.

Navigate to the ingest/ submodule of cmapdata. From there, run the following in the terminal.

65

cmapdata, Release 0.1.0

python general.py {filename} {-C} {cruise_name} {-S} {server}

• {filename}: Base file name in vault/staging/combined/. Ex.: ‘TN278_cruise_meta_nav_data.xlsx’

• {-C}: Flag indicating for cruise ingestion. Follow with cruise_name.

• {cruise_name}: String for official (UNOLS) cruise name Ex. TN278

• {-S}: Required flag for specifying server choice. Server name string follows flag.

• {server}: Valid server name string. Ex. “Rainier”, “Mariana” or “Rossby”

• {-v}: Optional flag denoting metadata template is present in the raw folder of the vault

• {in_vault}: If True, pulls template from vault. Default is False, which pulls from /final folder in Apps folder
created after submitting to the validator

An example string would be:

python general.py 'TN278_cruise_meta_nav_data.xlsx' -C TN278 -S "Rainier" -v True

Behind the scenes, the script is doing:

1. parsing the user supplied arguments.

2. Splitting the data template into cruise_metadata and cruise_trajectory files.

3. Importing into memory the cruise_metadata and cruise_trajectory sheets as pandas dataframes.

4. Filling in the ST bounds for the cruise_metdata dataframe with min/max’s from the trajectory dataframe.

5. Inserting the metadata dataframe into tblCruise.

6. Inserting the trajectory dataframe into tblCruise_Trajectory.

7. Using the trajectory dataframe to classify the cruise by ocean region(s).

8. Inserting the cruise_ID and region_ID’s into tblCruise_Regions.

66 Chapter 16. Ingesting Cruise Metdata and Trajectory

CHAPTER

SEVENTEEN

DB

The repository DB (https://github.com/simonscmap/DB) under the Simons CMAP github page stores all of the SQL
Server table creation scripts.

This repo contains subdirectories for db creation, stored procedures (usp), user-defined functions(udf) and data and
metadata tables.

The structure with examples is outlined below:

db
db.sql

tables
api

tblFront_End_Errors.sql
core

cruise
tblCruise_Trajectory.sql

tblVariables_update.sql
model

tblPisces_NRT.sql
observation

tblWOA_Climatology.sql
satellite

tblWind_NRT.sql
udf

udfVariableMetaData.sql
usp

uspWeekly.sql

67

https://github.com/simonscmap/DB

cmapdata, Release 0.1.0

17.1 Custom Table Creation

• FG’s, columns, datatypes

17.2 Indexing Strategy

• indices (time/lat/lon depth) climatology etc.
-how these relate to performance

68 Chapter 17. DB

CHAPTER

EIGHTEEN

COLLECT

This submodule contains various scripts for collecting outside data. Methods include FTP, curl, wget and others. Scripts
are usually one-off and are a record of the method used to collect the data. They are organized hierarchically in a similar
fashion to /vault.

assimilation
model
observation

in-situ
cruise

| | | cruise_name
| | | collect_{cruise_name}.py

drifter
float
mixed
station

remote
satellite

18.1 collection strategies

The oceanography data in CMAP comes from multiple sources which vary in the amount of data processing required
and available metadata. The first step of ingesting a dataset from an outside source into CMAP is collecting the data.
This generally starts with a python collection script. This both servers to collect the data as well as leave a record.

18.2 FTP Servers

Some datasets, especially when there are multiple files, are available over FTP servers. To retrieve this data, you can
either use some GUI FTP application such as FileZilla or a command line utility such as wget or curl. Examples of using
wget are available in some of the collect.py scripts. Some FTP sites required registrations and username/passwords.

69

cmapdata, Release 0.1.0

70 Chapter 18. collect

cmapdata, Release 0.1.0

18.3 Zipped File Links

Some data providers such as Pangea provide datasets and metadata as zipped files. While this is very convenient, it is
a good idea to still create a collect_datasetname.py file with the zipped file link.

18.4 Webscrapping

Some of the cruise trajectory and metadata was initially collected from R2R (Rolling Deck to Repository). Generally,
webscraping is only a last resort.

18.3. Zipped File Links 71

cmapdata, Release 0.1.0

72 Chapter 18. collect

CHAPTER

NINETEEN

PROCESS

Process is similar to collect in some ways. It contains independent scripts for processing larger datasets into the CMAP
database. It serves as a record for the data processing/cleaning steps. The organization roughly mirors vault/.

19.1 data flow

As files are processed, retain the raw, unprocessed data in vault/../{dataset_name}/raw. Smaller datasets can be
exported to vault/../{dataset_name}/raw to create a template for submitting to the web validator. Larger datasets such
as satellite, model or ARGO float data are too large to be run through the web validator. Metadata should still go
through the validator, including dummy data in the data tab with at least 1 row of placeholder data. These datasets can
be cleaned and ingested into the database in one process script. Once the data has been ingested, a cleaned version
should be exported to vault/ as a parquet file.

73

cmapdata, Release 0.1.0

74 Chapter 19. process

CHAPTER

TWENTY

INGEST

ingest/ is the submodule that contains ingestion and data processing functions, data vault structure logic and DB con-
nection information. Ingesting a dataset using this submodule will be covered in data_ingestion/workflow.

ingest/ is broken into the multiple python scripts to separate ingestion logic. Descriptions and uses of each are described
below.

20.1 api_checks.py

This script holds functions that leverage the DB API endpoint. See the data validation section for details.

20.2 common.py

This script holds many commonly used simple functions for data processing/cleaning. It is a good location for gener-
alized use functions.

20.3 credentials.py

This is a simple file hidden with .gitignore. Make sure this is not pushed to github! It contains usernames, passwords,
ip addresses, ports and connection strings. It is used primarilly by DB.py for database connections. Make sure this file
is duplicated across machines.

20.4 cruise.py

This file contains some cruise metadata helper functions and database calls along with a smattering of old cruise
trajectory/metadata webscrapping stuff for r2r (rolling deck to repository).

75

cmapdata, Release 0.1.0

20.5 data_checks.py

This script holds functions used to prepare datasets for ingestion, as well as within the ingestion process. See the data
validation section for details.

20.6 data.py

This file contains general cleaning and data processing functions specifically for the data sheet of the template.

20.7 DB.py

DB contains the SQL connection logic, table insert logic, bcp (MSSQL bulk copy program) wrapper functions etc.

20.8 general.py

general.py contains wrapper functions that take arguments through argparse to ingest datasets. It is the main script used
in the collection script.

20.9 ingest_test.py

This is a legacy script fragment for a started post-ingestion test suite, with the aim of testing the success of the ingestion.
Could be removed, rewritted or expanded upon.

20.10 mapping.py

Contains the functionallity for creating .png and .html interactive maps from input datasets. These are stored in /static
and used in the web catalog to give a spatial representation of a dataset. html interactive maps were never included in
the catalog, but could be.

20.11 metadata.py

This contains multiple functions to format the dataset_meta_data and vars_meta_data into custom SQL queries.

76 Chapter 20. ingest

cmapdata, Release 0.1.0

20.12 region_classification.py

This uses input dataset coordinates along with a geopackage of ocean regions to classify a dataset by spatial region.

20.13 SQL.py

Has functionality to suggest SQL tables and basic indices.

20.14 stats.py

Functions to build summary statistics from datasets. These results are used for data size estimations in the web app.

20.15 transfer.py

A few functions to move and split excel files from /staging to /vault

20.16 vault_structure.py

vault_structure contains the relative paths of vault as well as some directory creation structure.

assimilation
model
observation

in-situ
cruise

nrt
rep
metadata
doc
code
raw

drifter
float
mixed
station

remote
satellite

r2r_cruise

20.12. region_classification.py 77

cmapdata, Release 0.1.0

78 Chapter 20. ingest

CHAPTER

TWENTYONE

CODE CHANGES

• Improve test coverage

• Update all .format() to fstring formatting

• Metadata insert should all be captured in a SQL transaction, so that if a table insert fails, other tables and relations
are rolled back.

• Build up cruise ingestion infrastructure

• Build gridded spatio-temporal dataset classifier

• Finish cmapsync and put on cronjob with report emailed

79

cmapdata, Release 0.1.0

80 Chapter 21. Code Changes

CHAPTER

TWENTYTWO

API REF COMMON.PY

81

cmapdata, Release 0.1.0

82 Chapter 22. API Ref common.py

CHAPTER

TWENTYTHREE

API REF CRUISE.PY

83

cmapdata, Release 0.1.0

84 Chapter 23. API Ref cruise.py

CHAPTER

TWENTYFOUR

API REF DATA.PY

85

cmapdata, Release 0.1.0

86 Chapter 24. API Ref data.py

CHAPTER

TWENTYFIVE

API REF DB.PY

87

cmapdata, Release 0.1.0

88 Chapter 25. API Ref DB.py

CHAPTER

TWENTYSIX

API REF GENERAL.PY

89

cmapdata, Release 0.1.0

90 Chapter 26. API Ref general.py

CHAPTER

TWENTYSEVEN

API REF MAPPING.PY

91

cmapdata, Release 0.1.0

92 Chapter 27. API Ref mapping.py

CHAPTER

TWENTYEIGHT

API REF METADATA.PY

93

cmapdata, Release 0.1.0

94 Chapter 28. API Ref metadata.py

CHAPTER

TWENTYNINE

API/API_REGION_CLASSIFICATION.PY

95

cmapdata, Release 0.1.0

96 Chapter 29. API/API_region_classification.py

CHAPTER

THIRTY

API REF SQL.PY

97

cmapdata, Release 0.1.0

98 Chapter 30. API Ref SQL.py

CHAPTER

THIRTYONE

API REF STATS.PY

99

cmapdata, Release 0.1.0

100 Chapter 31. API Ref stats.py

CHAPTER

THIRTYTWO

API REF TRANSFER.PY

101

cmapdata, Release 0.1.0

102 Chapter 32. API Ref transfer.py

CHAPTER

THIRTYTHREE

API REF VAULT_STRUCTURE.PY

103

	Installation and Setup
	Documentation

	Database Design and Table Structure
	Variable Level Metadata
	Dataset Level Metadata

	Compute Resources and Data Storage
	Data Flow
	Data Storage
	Workstation Repositories
	Synology NAS and Drobo Storage

	Pitfalls
	CMAP Website
	Web Validator
	Workflow
	User Submitted Datasets
	Outside ‘Small’ Datasets
	Outside ‘Large’ Datasets
	Metadata Updates

	Table Creation and Indexing
	Space-Time Index
	Climatology
	File Groups

	Data Validation
	Pre-Ingestion Tests
	Post-Ingestion Tests
	DB API Endpoints

	Continuous Ingestion
	Collection Scripts
	Process Scripts
	Troubleshooting
	Batch Ingestion
	Continuous Ingestion Badge on Website
	Sea Surface Salinity Walkthrough
	Download SSS Data
	Process SSS Data

	User Submitted Dataset Walkthrough
	Removal of Previously Existing Dataset
	Specifying the Ingestion Arguments

	Outside Small Dataset Walkthrough
	Collecting a small dataset from an FTP site using wget
	Processing a small dataset

	Outside Large Dataset Walkthrough
	Argo Float Walkthrough
	Argo Data Collection
	Argo Data Processing
	Bulk Ingestion to the Cluster
	Creating and Ingesting Metadata
	Removing Old Argo Data

	Geotraces Seawater Walkthrough
	Geotraces Overview
	Geotraces Data Collection
	Geotraces Seawater Processing
	Ingestion to the Database
	Add New Cruises
	Creating and Ingesting Metadata
	Creating and Ingesting Unstructured Metadata

	Mesoscale Eddy Data Walkthrough
	Mesoscale Eddy Version History
	Mesoscale Eddy Data Collection
	Mesoscale Eddy Processing
	Creating and Ingesting Metadata

	Ingesting Cruise Metdata and Trajectory
	Metadata Sheet
	Trajectory Sheet
	Ingesting Cruise Templates

	DB
	Custom Table Creation
	Indexing Strategy

	collect
	collection strategies
	FTP Servers
	Zipped File Links
	Webscrapping

	process
	data flow

	ingest
	api_checks.py
	common.py
	credentials.py
	cruise.py
	data_checks.py
	data.py
	DB.py
	general.py
	ingest_test.py
	mapping.py
	metadata.py
	region_classification.py
	SQL.py
	stats.py
	transfer.py
	vault_structure.py

	Code Changes
	API Ref common.py
	API Ref cruise.py
	API Ref data.py
	API Ref DB.py
	API Ref general.py
	API Ref mapping.py
	API Ref metadata.py
	API/API_region_classification.py
	API Ref SQL.py
	API Ref stats.py
	API Ref transfer.py
	API Ref vault_structure.py

